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ABSTRACT

Estimation of frequency curves and Speech
Transmission Indices have been performed on six
hearing instruments using broad-band test signals.
All the instruments had some sort of signal
dependent signal processing implemented. The test
signals consisted of recordings of modulated and
unmodulated noise signals and a female and a male
voice. The estimation was based on a simpel model
of auditory perception using a filter bank of
Gamma-Tone filters to simulate the frequency
selectivity of the ear. Test signals processed by a
hearing instrument and unprocessed test signals are
compared at model outputs to get the desired
frequency curve estimates. Speech Transmission
Indices was estimated from correlations between
corresponding filter output signals. It is shown
that this correlation technique (as well as the
conventional coherence technique) has obvious
disadvantages when the measured system uses signal

dependent signal processing.
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INTRODUCTION

Measurements on hearing instruments are done
according to the standard IEC-118. The standard
describes how to measure frequency curves,
distortions and other characteristics of an
instrument. Measurements according to this standard
have successfully been used since many years for

technical assessments on hearing instruments.

A limitation in the standard is, however, that it
is not possible to measure frequency curves of
hearing instruments which change their
characteristics depending on the input signal, e.q.
AGC-instruments (AGC, Automatic Gain Control). To
an increasing extent hearing instrument
manufacturers are incorporating noise reducing
circuits in their instruments. Such instruments
make decisions, the outcome of which depends on
input signal statistics, on which signal processing

scheme to use.

A possible way to measure such instruments is to
use speech or speech-like signals as test signals.
Measures of frequency curves and distortions could
then be defined based on cross-correlation tech-

niques and the coherence function.

Such measurements on hearing instruments have been
performed by Dyrlund (1989, 1991) and others.

Within the American National Standards Institute,
Committee S3, Biocacoustics, there is work going on
to establish a new standard for measurements on

hearing instruments. The methods are based on
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broad-band noise test signals and cross-correlation
technique (ANSI, 1991).

Measuring systems using the cross-correlation
technique are mainly aiming at a purely technical
description of the system under test. Another
obiective of measurements is to estimate the
function of a hearing instrument from a perceptual
point of view. A measuring system which uses a
psychoacoustical model to define a distortion
measure has been developed at the Laboratory of
Acoustics in Lyngby, Denmark (Ludvigsen et al,
1990) and tested on a number of nonlinear hearing
instruments. Speech Transmission Index theory
(Humes et al, 1986; Pavlovic, 1987) was used to
predict the intelligibility of the processed test
signals. Good agreement between measured
characteristics and results of psycho-acoustical

listening tests were shown.

In this report a method to estimate frequency
curves, distorsions and STI-values by use of a
simple model of auditory perception is described.
Test signals processed by a hearing instrument and
unprocessed test signals are compared at model

outputs to get the desired estimates.

The work is a part of greater Nordic cooperation
work, where identical test signals and hearing
instruments have been used, but where the methods

of estimation were different.
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MATERIAL AND METHODS

Hearing instruments

Six different hearing instruments (Table I) were
used in this investigation. Three (H1l, H3, H4) were
ordinary AGC-instruments. One of these (H4) has a
fixed output-controlled AGC which only works at
high levels. Two (H2, H5) were signal processing
instruments with automatic bass cut. One hearing
instrument (H6) had a "Zeta Noise Blocker" circuit

(Graupe et al, 1986 a,b).

Table I. Hearing instruments

H1  Danavox 125-1 Input-controlled AGC

H2  Bosch 33 PP-ANR Automatic low-frequency noise reduction
H3  Dticon [35F Output-controlled AGC

H4  Widex ESH Qutput-controlled AGC

H5  Bosch 33PP-ANC Automatic low-frequency noise control
H6  Maico SP137 Zeta Noise Blocker

Test signals

The five test signals shown in Table II were taken
from a DAT-tape produced by Project O0din at the
Acoustical Laboratory, Technical University of
Denmark. All signals on the tape had the same long-

term RMS value.

Tabie II. Test signals

P2  Speech-shaped noise

P4 Modulated speech-shaped noise

P6  Speech-shaped noise with medulation from P10
P8 HMale voice

P10 Female veice
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These test signals were sampled at 20 kHz, lowpass

filtered at 7 kHz and stored on computer.

Equipment and measurements

The actual measurements on the hearing instruments
took place in an anechoic room. The frequency
response of the loudspeaker system is shown in

Fig 1. In order to equalize the frequency response
of the loudspeaker system, the test signals were
digitally filtered with an inverse filter. The
total, equalized loudspeaker response is shown in

Fig 2.

The recording and playback system was implemented
on an IBM/AT compatible computer and a front-end-
processor (TAMP3), developed at the Department of
Technical Audiology. TAMP3 has a TMS32010 signal-
processor, AD/DA converters, tracking anti-aliasing
filters, a controllable attenuator and a

preamplifier.

The test signals were output to the loudspeaker
system from the DA-converter and received by the
hearing instruments. The output signals from an
occluded ear simulator (B&K 4157) attached to the
hearing instruments were A/D-converted and stored
on computer hard disc. This was done for the five
test signals and for the six hearing instruments at
full-on-gain and at a reduction of gain of 10, 20
and 30 dB. During the recordings the AGC controls
were set to their most active positions. Reference
signals were also recorded. The presentation level
was 70 dB SPL.

In order to calculate the frequency responses,
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distorsions and STI-values the recorded signals
from the hearing instruments were compared with the
reference signals after being processed through
channels A and B respectively according to the
signal processing scheme in Fig. 3. The scheme was
implemented on a DSP card (Loughborough Sound
Images DSP32C PC System Board). Each channel in the
scheme constitutes a simple model of the auditory

periphery.

Auditory model

Bach of the two filter banks in the model consists
of 29 bandpass filters. The filters were
implemented as complex "Gamma-Tone"-filters of
second order (Patterson, 1988). The frequency
characteristics of such filters are in good
agreement with the shapes of PTC-curves
(Psychoacoustical Tuning Curve) of normal-hearing

subjects.

Fig. 4 shows the frequency response for the filter
centered at 1 kHz and Fig. 5 shows the frequency
responses of all filters. According to Moore &
Glasberg (1983) the equivalent rectangular
bandwidth (ERB) of an auditory filter in the ear is

ERB(f) = 6.23+*1070%fg% + 93.39%107 3% + 28.52
(100<£p<10000)

where fg is the frequency in Hz.

The complex time discret Gamma-Tone filter of order
two has a complex double-pole. The transfer

function is thus given by
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1 - rg

1 - z—lroejeo

where roej90 is the coordinate for the poles. The

corresponding complex pulse response is given by

g(n) = (n+l)roledn®o

The ERB of this filter is given by

1 - rjg 1 - 1xg 2
ERBp = A —————— 1+ [ m_m—————-}

or
fs 1 - rO l - rO 2
ERBp = * 1 + ( }
2 1 + g - 1 + 1y
{ Hz )

where fg is the sampling frequency. As rp is close
to 1 the second term inside the brackets can be
omitted with only minor influence on the result.

The last formula can then be rewritten

rg =
fs - 2ERBr
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If ERB for the auditory filter is substituted for
ERBr we get a relation between rg and center
frequency of the filter. The pole angle 0pg can be

found from

8g = 2n fg/fg

The center frequencies of adjacent filters are
separated by one half of the equivalent rectangular
bandwidth.

For each complex filter the intensity was calcu-
lated as the square of the complex output signal
filtered through a lowpass filter of first order

with a time constant of 125 ms.

Frequency curves were estimated as the square root
of the quotient between the intensity of a filter
in channel A (with the input signal processed by a
hearing instrument) and the intensity of the
corresponding filter in channel B (with the
reference signal as input signal) as a function of

the filter center frequency.

The intensities of corresponding filters in the two
filterbanks were correlated to obtain a measure of

correlated vs uncorrelated energi (S/N-ratio) as a

function of filter center frequency (see

Appendix A).

STI-calculations

The STI-calculations were done according to Fig. 3.
To the S/N value in dB in each frequency band 12 dB
was added. The sum was then divided by 30 and the

quotient was limited to the range zero to one. Each
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band has an individual importance factor according
to Pavlovic (1987), see Table III, which the
quotient was multiplied by. The results for all

bands were added to give the STI-value.

Table I11. Importance factor

Filter freguency [mportance
in Hz
110.671 0.003
151.533 0.008
196.483 0.013
245,955 0.019
300.438 0.025
360.482 0.032
426.703 0.040
499,796 0.043
580,550 0.043
669.856 0.043
768.731 0.043
878.336 0.043
1000.900 0.043
1135.257 0.043
1285.879 0.043
1453.928 (.043
1641.815 0.043
1852.374 0.043
2088.964 0.043
2355.590 0.043
2657.068 0.043
2999.7243 0.043
3389.273 0.043
3836.027 0.043
4350.625 0.040
4947 .200 0.034
5644.001 0.028
6465.008 0.021
7442.377 0.013
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RESULTS

The estimated frequency gain curves for the
different hearing instruments and test signals are
shown in figs 6 - 29. Curves are shown for full-on-
gain and gain reductions of 10, 20 and 30 dB.
Instruments H1l, H2, H5 and H6 have gain curves with
magnitudes controlled by the volume control.
Instruments H3 and H4 which have output-controlled
AGC, give gain curves which are less controlled by
volume control settings. This is especially true
for H3 (figs 14-17), for which the gain has to be
reduced by 30 dB before the magnitude of the gain
curves starts to decrease. Instrument H4 has a
fixed AGC which is active only at the highest
levels. For all the instruments tested there is a
dependence of test signal on the gain curves. For
instrument H4 (Figs. 18-21) this is true only for
the highest gain. This difference in gain curves
occurs because the signal adaptive circuits in the
instrument are active. It is most obvious for

instruments H1 and H3.

The correlations as a function of filter frequency
between instrument processed and unprocessed test
signals are found in figs 30-53. In general these
correlations are low. (A correlation of 0.7 means a
S/N-ratio of 0 dB). There are exceptions, however:
Instrument H4 (except at highest gain), and
instrument H6. Even these two instruments have low
correlations for some of the test signals,

although.

The equivalent S/N-ratio as a function of filter

frequency were calculated according to Appendix A.
The S/N-ratio together with the importance factor
of the filterband, determined the STI-value. STI-
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values for the various hearing instruments as a
function of test signals are shown in figs 54-59.
The gain reduction is shown as a parameter in the
figures. Instruments H2Z and H5 seemes to be least
influenced by different gain values. This is also
true for instrument H1 with the exception of test
signal P2. Instrument H3 is most influenced by gain
settings. Instrument H4 gives rather high STI-
values except for test signal P2, and for all
programs at 0 dB gain reduction. The highest STI-
values are obtained for instruments H4 (except for
0 dB gain reduction) and H6 for test signal P6.

The overall impression is that different
instruments behave quite differently for the
various test signals. This is clearly demonstrated
in Figs. 60-64 which show STI-values as a function
of hearing instrument for the various test signals.
In Fig. 65 the mean of the STI-values as a function
of test signal are shown, calculated over hearing
instruments and gain reductions. There is, on the
average, no great difference between the STI-values
obtained from dissimilar test signals.

Fig. 66, finally, gives the overall STI-values of
the instruments averaged over gains and test
signals. Instrument H6 has got a somewhat higher

STIvalue than the other instruments.

DISCUSSION

In linear system theory the coherence function is
widely used to judge the validity of a measured
frequency response since disturbances like noise

and distortion products tend to decrease the
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coherence. If it is known that the noise level is
low, it is natural to regard the decrease in
coherence as caused by nonlinearities and from this
decrease define a measure of total distortion.
Anyway, for the purpose of calculating the
Articulation Index or the Speech Transmission
Index, it is straightforward to treat this decrease
in coherence simply as caused by an uncorrelated
noise source and define a S/N-ratio as the quotient
of coherent power to uncoherent power. The
arguments for using correlations between model
filter outputs as a basis for calculations of S/N-
ratios and STI-values are the same as the arguments

for using the coherence function.

Unfortunately, as is shown in Appendix B, the
correlations will be reduced for a system with AGC
or similar types of signal processing if for
instance the gain is changed over the time of
measurement. This is the case for the instruments
measured in this experiment, possibly with the
exception of instrument H6 and H4 with gain
reductions of 10, 20 and 30 dB.

What is shown in Appendix B is also true for
coherence measurements since the coherence function
is the correlation between two signals evaluated as

a functicon of frequency.

The obvious conclusion of the Appendix B is that
correlation or coherence techniques do not separate
the nonlinear distortion caused by memoryless
nonlinearities from distortion caused by gain
variations. If we want to distinguish between
distortions from memoryless nonlinearities which

cause perceptually more harm and distortions from
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purposely introduced AGC-type nonlinearities we

have to find other means to achieve this goal.

It can also be shown that, when using a modelbased
approach as done in this work, a slopeing of the
frequency curve of a hearing instrument within a
filter band will further decrease the correlation
as may be seen in most of the correlation fiqgures

for higher frequencies.
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APPENDIX A

Given two signals x(t) and y(t), which are output
signals from corresponding filters in channels A
and B resp of Fig. 3, we want to estimate the
amount of energy in signal y(t) which is dependent

on x(t}. For simplicity we assume that

E{x(t)} = B{y(t)} =0 (1)

where E{°'} is espected value. We first form

estimates of the intensities of the signals by

LP{x%(t)} (2)

-
b
t
I

LP{y?(t)} (3)

H
e
t
Il

respectively, where LP{"} is a lowpass operator. It

can be observed that

2

E{Ix(t)} = ox> and E{Iy(t)} = oy?

(4)

2 2

where ox“ and oy® are the variance of signal x(t)

and y(t) respectively. Our signal model is
Iy(t) = a*Ix(t) + Iy(t) (5)

where Iy (t) is a noise component. If we take the

expected values of (5) we get with the use of (4)

2

oy~ = a*oX2

+ sz (6)

The signal-to-noise ratio (S/N)} is given by

a*cx2 a*oX2

S/N = ——— = (7)
cvz 0Y2 - a*oxz

16
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If we cross-correlate Iy(t) and Iy(t) we get

r = E{(Ix(t) - ox?)(Iy(t) - oy®)} =
= E{Ix(t)Ty(t) - ox’oy?} (8)
= * - 2 * 2 2 —
r o= E{Ix(t)(a*Iy(t)+Iy(t))} - ox?(a*oxitoy?) =
= a*(B{Ix(t)} - ox?) (9)
From (9) we get
Ir
a = (10)

E{Ix2(t)} - ox"

With (10) and (8) equation (7) can be written

2

Ox2¥E{Tx () Ty(t) - ox’oy?}

S/N =
oy 2 F[E{Ix? () }=0xd1-0x2*E{I, () Iy (t)-0yx%0y?)

(11)

17
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APPENDIX B

Given two channels A and B with signals ya(t) and
yp(t) which are of the form

ya(t) = a(t)*x(t)
and

yp(t) = x(t) respectively,

where a(t) is a slowly varying function depending
upon x(t), we want to calculate the correlation
between the channels. The signals could for
instance be the output and input signals to an AGC

circuit. The squared correlation is estimated by

Ty T
l 2
f—J' a(t)|x(t)]|zdt q
T
To
r: =
T+ Tot+T
1 1
— la(t)x(t)]|2dt — [x(t)]|=dt
T T
T Ty

Schwarz's inequality yields

[g(x)]*dx

o

b b
{~ J f(x) g(x) dx _} < J [f{x)]2%dx
a a

Identifying f(x) with a(t)x(t) and g(x) with x(t)

gives the result

r: < 1

18
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with equality only if a{t) is a constant, i.e.
perfect correlation can only be achieved if the

gain is constant.

19
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Fig. 1. Frequency response of loudspeaker system.
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Fig. 2. Equalized frequency response of loudspeaker system.
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value.
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Fig. 5. Frequency responses of Gamma-Tone filters in each
filter bank.
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Danavox 125—1

100 H00 1000 5000
Filter center freguency (Hz)

Fig. 6. Gain as a function of filter center
frequency for hearing instrument H1 for the
different programs. Gain reduction 0 dB,.

Danavox 1251

100 500 1000 5000
Filter center freguency (Hz)

Fig. 7. Gain as a function of filter center
frequency for hearing instrument H1 for the
different programs. Gain reduction 10 dB.

P2

""""""""""" 6
£8
10



GAIN (dB)

GAIN (dB)

80

[S10)

40

20

80

&80

40

20

ISSN 0280~-6819
TA126, March 1992

Danavox 125-—1
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Fig. 8. Gain as a function of filter center
frequency for hearing instrument Hl1 for the
different programs. Gain reduction 20 dB.

Danavox 125—1

100 500 1000 5000
Filter center frequency (Hz)

Fig. 9. Gain as a function of filter center
frequency for hearing instrument H1 for the
different programs. Gain reduction 30 dB.
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Fig. 10. Gain as a function of filter center
frequency for hearing instrument H2 for the
different programs. Gain reduction 0 dB.
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Fig. 11. Gain as a function of filter center
frequency for hearing instrument H2 for the
different programs. Gain reduction 10 dB.
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Fig. 12. Gain as a function of filter center
frequency for hearing instrument H2Z for the
different programs. Gain reduction 20 dB.
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Fig. 13. Gain as a function of filter center
frequency for hearing instrument H2 for the
different programs. Gain reduction 30 dB.
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Fig. 14. Gain as a function of filter center
frequency for hearing instrument H3 for the

different programs. Gain reduction 0 dB.
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Fig. 15. Gain as a function of filter center
frequency for hearing instrument H3 for the

different programs.
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Oticon E35F

100 500 1000 5000
Filter center frequency (Hz)

Fig. 16. Gain as a function of filter center
frequency for hearing instrument H3 for the
different programs. Gain reduction 20 dB.
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Fig. 17. Gain as a function of filter center
frequency for hearing instrument H3 for the
different programs. Gain reduction 30 dB.
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Fig. 18. Gain as a function of filter center
frequency for hearing instrument H4 for the
different programs. Gain reduction 0 dB.
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Fig. 19. Gain as a function of filter center
frequency for hearing instrument H4 for the
different programs. Gain reduction 10 dB.
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Fig. 20. Gain as a function of filter center
frequency for hearing instrument H4 for the
different programs. Gain reduction 20 dB.
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Fig. 21. Gain as a function of filter center
frequency for hearing instrument H4 for the
different programs. Gain reduction 30 dB.
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FPig. 22. Gain as a function of filter center
frequency for hearing instrument H5 for the
different programs. Gain reduction 0 dB.
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Fig. 23. Gain as a function of filter center
frequency for hearing instrument H5 for the
different programs. Gain reduction 10 dB.
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Fig. 24. Gain as a function of filter center
frequency for hearing instrument H5 for the
different programs. Gain reduction 20 dB.
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Fig. 25. Gain as a function of filter center

frequency for hearing instrument H5 for the
different programs. Gain reduction 30 dB.
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Fig. 26. Gain as a function of filter center
frequency for hearing instrument H6 for the
different programs.

Gain reduction 0 dB.
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Fig. 27. Gain as a function of filter center
frequency for hearing instrument H6 for the
different programs.
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Gain as a function of filter center
frequency for hearing instrument H6 for the
different programs. Gain reduction 20 dB.
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Gain as a functicon of filter center
frequency for hearing instrument H6 for the
different programs. Gain reduction 30 dB.
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30. Correlation from auditory model as a function of
filter frequency for hearing instrument H1l for
the different programs. Gain reduction 0 dB.
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31. Correlation from auditory model as a function of
filter frequency for hearing instrument Hl for
the different programs. Gain reduction 10 dB.
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Danavox 1251
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32. Correlation from auditory model as a function of
filter frequency for hearing instrument Hl for
the different programs. Gain reduction 20 dB.

Danavox 125-—1
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33. Correlation from auditory model as a function of
filter frequency for hearing instrument Hl1 for
the different programs. Gain reduction 30 dB.
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Fig. 34. Correlation from auditory model as a function of
filter frequency for hearing instrument H2 for
the different programs. Gain reduction 0 dB.
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Fig. 35. Correlation from auditory model as a function of
filter frequency for hearing instrument H2 for
the different programs. Gain reduction 10 dB.
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36. Correlation from auditory model as a function of
filter frequency for hearing instrument H2 for
the different programs. Gain reduction 20 dB.
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37. Correlation from auditory model as a function of
filter frequency for hearing instrument H2 for
the different programs. Gain reduction 30 dB.
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Oticon E35F
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38. Correlation from auditory model as a function of
filter frequency for hearing instrument H3 for
the different programs. Gain reduction 0 dB.
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39. Correlation from auditory model as a function of
tilter frequency for hearing instrument H3 for
the different programs. Gain reduction 10 dB.
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Fig. 40. Correlation from auditory model as a function of
filter frequency for hearing instrument H3 for
the different programs. Gain reduction 20 dB.
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Fig. 41. Correlation from auditory model as a function of
filter frequency for hearing instrument H3 for
the different programs. Gain reduction 30 dB.
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Widex ESO6
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42. Correlation from auditory model as a function of
filter frequency for hearing instrument H4 for
the different programs. Gain reduction 0 dB.

Widex ES6
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43, Correlation from auditory model as a function of
filter frequency for hearing instrument H4 for
the different programs. Gain reduction 10 dB.
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Fig. 44. Correlation from auditory model as a function of
filter frequency for hearing instrument H4 for
the different programs. Gain reduction 20 dB.
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Fig. 45. Correlation from auditory model as a function of
filter frequency for hearing instrument H4 for
the different programs. Gain reduction 30 dB.
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Fig. 46. Correlation from auditory model as a function of
filter frequency for hearing instrument H5 for
the different programs. Gain reduction 0 dB.
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Fig. 47. Correlation from auditory medel as a function of
filter frequency for hearing instrument H5 for
the different programs. Gain reduction 10 dB.
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48. Correlation from auditory model as a function of
filter frequency for hearing instrument H5 for
the different programs. Gain reduction 20 dB.
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49. Correlation from auditory model as a function of
filter frequency for hearing instrument HS5 for
the different programs. Gain reduction 30 dB.
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Fig. 50. Correlation from auditory model as a function of
filter frequency for hearing instrument H6 for
the different programs. Gain reduction 0 dB.
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Fig. 51. Correlation from auditory model as a function of
filter frequency for hearing instrument H6 for
the different programs. Gain reduction 10 dB.
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52. Correlation from auditory model as a function of
filter frequency for hearing instrument H6 for
the different programs. Gain reduction 20 dB.
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53. Correlation from auditory model as a function of
filter frequency for hearing instrument H6 for
the different programs. Gain reduction 30 dB.
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Fig. 54. STI as a function of test signal for hearing
instrument Hl. Gain reduction from max gain as

parameter.
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Fig. 55. STI as a function of test signal for hearing
instrument H2. Gain reduction from max gain as
parameter.
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Fig. 56. STI as a function of test signal for hearing
instrument H3. Gain reduction from max gain as
parameter.
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Fig. 57. S8TI as a function of test signal for hearing
instrument H4. Gain reduction from max gain as
parameter.
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Fig. 58. 8TI as a function of test signal for hearing
instrument 5. Gain reduction from max gain as

parameter.
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Fig. 5%9. STI as a function of test signal for hearing
instrument H6. Gain reduction from max gain as
parameter.
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Fig. 60. STI as a function of hearing instrument for test
signal P2. Gain reduction from max gain as
parameter.
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Fig. 61. STI as a function of hearing instrument for test

signal P4. Gain reduction from max gain as

parameter.
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Fig. 62. STI as a function of hearing instrument for test
signal P6. Gain reduction from max gain as
parameter.
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Fig. 63. STI as a function of hearing instrument for test

signal P8. Gain reduction from max gain as

parameter.
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64. STI as a function of hearing instrument for test
signal P10. Gain reduction from max gain as
parameter.
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Fig. 66. STI as a function of hearing instrument. Mean
values over test signals and gains.
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