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ABSTRACT

The final response at the eardrum is difficult to
predict while fitting hearing aids on different ears.
The result is depending on the relation between
hearing aid output impedance and ear input impedance.
A hearing aid may produce rather varying response when
used on different ears. In addition, this variation in
response is different among hearing aids. Although the
problem has been known for many years, no sclution has
reached the point of common use.

A literature survey on this subject has been carried
out. Only two papers are dealing with a solution of
this particular problem, but some of the work on
diagnosis of the middle ear may turn out relevant to
this problem too. Most of the papers found are discus-
sing systems for impedance measurements on the human
ear and theoretical models of the ear.
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INTRODUCTION

The response from a hearing aid may show great vari-
ations when used on different ears. The variations may
reach 20 dB at high frequencies (Olsson, January
1985) .

This is a major problem when fitting hearing aids. The
basis for selecting hearing aids is measurements on a
coupler, which does not give enough information about
the final response on an individual ear.

In order to estimate the variations a study was made
at three hospitals in Stockholm (Berninger, Ovegard,
Svard Oktober 1989). The result from tests in the
frequency range 500 Hz to 4 kHz with one aid on 16
ears was major variations throughout the range.

The variations are due to the facts that the output
impedance of hearing aids are different, and that the
input impedance of the human ears are different.

The aim of the project, which this survey is part of,
is to solve the acoustical problems found while
fitting hearing aids. The frequency range of interest
is that of speech, with some margin for further de-
velopment on hearing aids.

The literature survey covered some 200 papers and
reports. Out of these approximately 100 were studied
in detail. This report covers the 48 most relevant to
the project.

MEASUREMENT METHODS FOR THE IMPEDANCE OF THE HUMAN EAR

The ''reaction-on-load" method

One of the first methods for impedance measurement of
the human ear was the "reaction-on-load" method. An
electro-acoustic transducer was generating a soundwave
into the ear canal. The acoustic loading of the trans-
ducer caused by the ear canal was transformed to the
electrical input of the transducer. In principle, the
acoustic impedance of the ear can be measured as an
electrical impedance. In reality the impedance was not
measured directly but by comparison with the known
impedance of a tube.
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This method was used during the thirties and fourties,
However, it had very low sensitivity except for fre-
quencies near the membrane resonance frequency.
References to measurements of this type are given in
Delaney (1964) and Metz (1946).

Recently Puria and Allen (Fall 1989) presented a mea-
surement method based on an earphone and a four-cavity
calibration. For frequencies up to 15 kHz, the calib-
rated earphone is used to measure the impedance of the
ear canal near the canal entrance. In order to trans-
form this impedance to the eardrum impedance, the ear
canal has been modelled. The following effects are
accounted for by the model:

- The jump in cross-sectional area from the earphone
calibration cavity to that of the ear canal.

- The distance to the eardrum.

- Variations in the ear canal cross-sectional area.

- Effects due to ear canal wall impedances.

The acoustic bridge

Some of the measurement-techniques used for ears were
originally borrowed from the realm of technical
acoustics, the most frequent measurement objects being
porous materials. One of these techniques was the
acoustic bridge. Otto Metz introduced it to clinical
investigations in 1946 (Metz, 1946).

The measurement apparatus consisted of two main tubes
with a symmetric loudspeaker in between, the loud-
speaker providing equal but opposite phase waves to
the tubes. The main tubes are connected through an
indicator-tube with an outlet for stethoscope on top.
One of the main tubes is connected to the ear canal,
the other one to an adjustable but known impedance.
When the adjustable impedance equals that of the ear,
the sound pressure at the indicator-ocutlet is zero.
Major drawbacks of this method are:

- Large size, if measurements are to be made at low
frequencies.

- The variable impedance is difficult to adjust.

- The value of the variable impedance is hard to
determine.

- Not able to distinguish between resistance and
reactance.

Metz used four frequencies between 384 and 1145 Hz,
but the range has been extended to 7500 Hz in other
works (Zwislocki, 1982). One interesting modification
of the instrument was made by Zwislocki. A cavity in
front of the variable impedance was made equal to the
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volume of the ear canal. In this way the measured
impedance was that of the eardrum.

The "''two-tube" method

Two methods has come to a broader clinical use. One is
the acoustical bridge, the other one is a "physical
method" presented by Zwislocki (March 1957, 1982).
Below the latter is referred to as the "two-tube"
method.

An earphone is radiating sound into the ear canal
through a thin tube. The source will act as a high
impedance- (or velocity-) source. A microphone is
measuring the sound pressure in the ear canal through
another tube. Results are obtained as a difference
between measurement in a cavity with known impedance
and measurement in the ear.

The low frequency limit is the frequency where the
source is not acting as a velocity source anymore (at
approximatly 300 Hz). The upper frequency limit is
given by the limited sound insulation between the
tubes (at 1-3 kHz). While the acoustic bridge is
considered inappropriate at low frequencies, the "two-
tube" method is not recommended at high frequencies.
The latter method has reached a wider use than any
other method so far. In particular this is true for
the variant with a third tube giving the possibility
of changing the constant pressure in the ear canal.
This has become known as "tympanometry",

Mgller presented a variation on the same theme, and
was the first one to report measurements of complex
impedance of the ear (Mgller, February 1960). An
earphone and a microphone was connected to the same
measurement tube which was in turn connected to the
ear canal. The aim was to measure the impedance of the
eardrum (as in the case of Zwislocki, March 1957). As
the measurement was made near the entrance of the ear
canal, Mgller used an electrical analog model in order
to calculate the eardrum impedance, thus compensating
for the ear canal.

He was able to make static as well as dynamic
measurements beween 200 Hz and 2 kHz., In order to
achieve a high precision measurement, corrections
should be made for the receiver- and microphone-
impedances. As this was not made, his results are
considered as indications (Pinto, Dallos January
1968) .

In order to determine the sensitivity of earphones,
Delany measured the ear input impedance through four
different earcaps (Delaney, 1964). Two 1/2" micro-
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phones were used mounted in the earcaps. Calibrating
the system to a hard-walled tube, he managed to cover
the range 20 Hz to 8 kHz. An electric analog network
for the impedance of the human ear as viewed through
the aperture of an earcap was presented.

The first work presented with both transducers in the
ear canal was Bruel et al. (1975). They used a swept
sinusoidal signal (chirp) between 200 Hz and 10 kHz.
Two microphones were used with protection grids re-
moved, this made them very fragile and some diffi-
culty with cerumen (ear wax) was experienced.

Rabinowitz measured resistance and reactance of the
ear input immittance (impedance or admittance). This
was carried out with a modulation technique for fre-
quencies 62 Hz to 4 kHz. The measurement signal used
was a swept sinusoidal with the frequency changed step
by step, at 10 frequencies per octave (Rabinowitz,
October 1981). The measurements were made, as usually,
near the entrance of the ear canal. In order to cal-
culate the immittance of the eardrum, the ear canal
was modelled as a tube with constant cross-section.
The volume of the tube was determined through measur-
ing reactance at low frequencies and with ambient air
pressure in the canal. The same measurement was per-
formed with constant pressure in the ear canal differ-
ent from the ambient air pressure, the remaining
reactance thus being due to that of the ear canal. All
this was already in common use at the time, but apart
from others Rabinowitz did not regard the eardrum as
rigid at over-pressure, but with a finite reactance.

The electro-acoustic bridge

An electro-acoustic bridge was presented by Terkildsen
and Nielsen. The sound source consisted of an earphone
plus a narrow tube. The microphone consisted of the
same type of earphone plus tube (Terkildsen,Nielsen,
September 1960). On the electrical side of the ar-
rangement the microphone signal was balanced out in
phase and amplitude. By doing this on known cavities
and on the ear, the phase and modulus of the ear im-—
pedance was determined. The volume of the ear canal
was measured by filling it with alcoheol. The measure-
ment results were corrected according to this volume
with a hard-wall cavity as a theoretical model. A
single frequency of 220 Hz was used.

Pinto and Dallos used essentially the same method as
Terkildsen and Nielsen, but with a slightly more
complicated electrical equipment (Pinto, Dallos,
January 1968). The range 250 Hz to 1250 Hz was covered
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with a maximum error of 5% in magnitude and 3 degrees
in phase.

The "one microphone" method

Sondhi and Gopinath (1971) used a measurement device
consisting of a tube with one microphone at one end,
and the other end terminated by absorbing material.
The measurement signal was impulse, and from the re-
sponse the area function of the vocal tract was de-
termined. This method requires that only plane waves
are propagating. It was shown that a measurement in
one point only can not provide any information about
losses in the measured sample (Sondhi, Resnick, March
1983). Sondhi and Gopinath used the method on the
human vocal tract.

Joswig used this technique on the ear. In this case
the sound source is a high voltage spark which is not
constant over long periods of time. The main problem
is however the connection of the measurement tube to
the ear. Errors at this point may for instance be
caused by leakage or by the tube being placed at wrong
angle (Joswig, Spring 1981, Hudde, 1984).

The "two microphone' method

From measurements in free field, Mehrgardt and Mellert
(June 1977) was able to calculate the ear canal trans-
fer function from 2 kHz to 15 kHz. Although the tech-
nique was not referred to as the "two microphone™"
method, the approach is closely related.

When developing a dummy head microphone, Hamada and
Sekiya also used this method (Hamada et al., December
1980, Sekiya et al., December 1981). The tube diameter
was 5 mm and the frequency range 500 Hz to 16 kHz. The
energy losses in the tube were accounted for but not
higher modes. Comparison was made between measured and
calculated values of a copper tube, and fairly good
agreement was obtained.

With three microphones in the ear canal, Hudde was
able to measure both the eardrum impedance and the
area function of the ear canal between 960 Hz and 19.2
kHz (Hudde, January 1983a, Jahuary 1983b, 1984). A re-
quirement for his method to be valid is that the sound
pressure in one point is possible to determine from
the sound pressure in the other two points. The tech-
nique is basically the "two microphone" method, but
the algorithm also gives corrections from which the
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quality of the measurement can be determined. Although
not able to detect all errors, it did reject 13 out of
22 measurements. It is suggested that reflectance
should be used instead of impedance. The reason for
this is that reflectance is less sensitive to varia-
tion in probe position (Hudde, January 1983b). At 2-3
mm from the eardrum higher modes are considered neg-
ligible and are not included in the measurement algo-
rithm or the theoretical model. It is also declared
that a complete knowledge of the sound field at this
point requires knowledge of the higher modes. Another
conclusion is that the tube with constant section and
rigid walls is not sufficient as a model of the ear
canal at frequencies higher than 2 kHz.

Murphy proposed an intensity measurement technigque
(which is closely related to the "two microphone"
method) slightly downstream from the point of sound
delivery (Murphy et al., Spring 1987, Fall 1989). The
measurement device plus sound delivery system is built
into a two-port earmold and is measuring the reflec-
tance of the ear canal. It requires measurement of the
effective ear canal transfer function to the points of
the multiple microphones (Rabbitt, December 1988).

The "two microphone" method was also used by Okabe et
al. (1988) for measurements between 800 Hz and 8 kHz,.
From measurements near the ear canal entrance, the
eardrum impedance was calculated using a matrix formu-
lation of the ear canal. This theoretical canal model
consisted of sections of tubes with constant cross-
section. A cavity was used for comparison between mea-
sured and theoretical reactance. The agreement was
good in the frequency range used.

Keefe et al.(Spring 1987) used this technique for a
narrow impedance tube. In this system, a calibrated
tube with known geometry is sealed to the ear canal.
The viscous and thermal losses in the tube were ac-
counted for, and measurements were made between 200 H=z
and 6 kHz. One advantage of this method is that no
constant velocity source is required.

Measurements in physical models

Stinson presented a theory (Khanna,Stinson, February
1985) together with measurements in scaled replicas of
the ear canal. The canal was enlarged by a factor
2.56, and the model was provided with holes for probe
microphones along the canal and along the eardrum sur-
face (Stinson, November 1985). The cross-sectional
area function was determined in the following manner:
With the canal in a vertical position, the model was
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filled with water up to the level of measurement. By
dropping a chrome steel ball with known volume into
the water, the cross-section area at this coordinate
was determined from the change of the water surface
location. Comparison was made with the above mentioned
theory and the results are quite good with the eardrum
modelled as a single point impedance.

Stinson also reports measurements of the shape of 15
ear canals. The measurements are made in 1000 coordi-
nate points (each one in three dimensions) on molds of
original size (Stinson, Lawton, June 1989). The mea-
surements are summarized as individual ear canal area
functions. It is shown that accurate specification of
the canal geometry leads to improved predictions of
the sound pressure distribution along the canal at
frequencies higher than 8 kHz.

In order to investigate what effect a spatially dis-
tributed eardrum impedance has on the sound pressure
distribution, Stinson and Khanna (June 1989) made
measurements in a tube with square cross-section. The
eardrum was modelled as a flat surface along one side
of the canal. It consisted of a piston with shaker in
one experiment and a locally reacting absorber in
another. Along the canal three probe microphones were
moved in order to detect higher order modes. The re-
sults are compared with the theory of Rabbitt and
Holmes (March 1988). The agreement is good up to a
frequency that corresponds to 15 kHz in a human ear
canal.

Higher order modes

Most of the papers in this survey deal with low fre-
quency methods. This means that only plane waves are
considered. No propagating higher modes are to be
expected below 18 kHz (Rabbitt, December 1988). But
higher modes in the sense of nearfield modes (prim-
arily near the ear canal entrance and the eardrum) may
be found above 2.5 kHz (Rabinowitz, October 1981),.
According to Hudde (June 1989), these nearfield modes
may exist as low as 1/10 of the cutoff frequency of
the first nonplane mode, but there is no distinct
limit. When including higher order modes the reflect-
ance as a scalar is not adequate. The modes may inter-
act and the reflectance is therefore specified as a
matrix.

Hudde (1989) presents two measurement methods for the
reflectance matrixes. As higher modes are considered,
the frequency range is increased compared to other
methods. The measurement arrangement consists of a
measuring pipe, an extendable adapter and a test pipe
in which the object being tested is placed.
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EASUREMENT METHOD FOR OUTPUT IMPEDANCE OF THE HEARING

A
D

&

The "two-load" method

Little attention has been paid to the sound source in
question, i.e. the hearing aid. Concerning the output
impedance of the receiver (or receiver plus tygon tube
and mold), David Egolf et al. (October 1977, January
1978, 1988) published results from a measurement tech-
nique using four-pole theory.

In Egolf et al.( October 1977), the "two-load" method
is presented. This implies loading the object with two
different acoustic loads (coupler and coupler plus
tube) and calculating the four-pole parameters from
measurements on the electrical input and acoustical
output. The limitations in terms of impedance is given
as (2s: source impedance, Z1,Z2 : load impedances):

- Z]1 approx. equal to Z2
- 21 << Zs and Z2 << s , or Z1 >> Zs and Z2 >> Zs

Direct experimental verification is possible only for
one of the four parameters, the other three require
zero output velocity which is not possible to achieve.
Hence the other verifications are carried out in an
indirect way. Comparing experimental and computer
generated results showed a maximum difference of 5 dB
in the range 250 Hz to 6.5 kHz,.

THEORETICAL MODELS OF THE HUMAN EAR CANAL WITH EARDRUM

The ear canal geometry must be properly described be-
fore quantitative predictions of sound pressure dis-
tributions in the canal can be made. Reflections at
the eardrum result in standing waves in the ear canal
in case of a stationary sound field (Khanna, Stinson,
February 1985). The tapered shape of the canal results
in higher sound pressure near the eardrum and a diff-
erent standing wave field from that of a homogeneous
tube. The eardrum is terminating the canal at a sharp
angel and causes the sound pressure to vary over it
for high frequencies. Therefore, the sound pressure
level at the eardrum is not a direct measure of the
input to the ear.

Below 18 kHz, the plane wave is the only mode that
propagates along the length of the canal (Rabbitt,
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December 1988). It has been shown (Rabbitt,Holmes
March 1988) that multidimensional higher modes, al-
though not transporting energy, affect the behavior of
the eardrum. Mainly low-frequency models are used and

the degree of- sophistication required  in. representing . .

the human ear depends primarily on the highest fre-
quency of interest.

The cavity

The cavity model implies that all dimensions of the
ear canal (the canal length is about 25 mm) are con-
siderably less than a quarter of a wavelength of
sound. In this model wave propagation is not taken
into account. All parts of the cavity are affected eq-
ually and at the same instant. In a lumped model the
ear canal may therefore be treated as a compliant vol-
ume of air, and the model may work up to 1 kHz
(Stinson, Lawton June 1989).

The tube

At frequencies higher than 1 kHz, the cavity model
breaks down. In many cases the ear canal can then be
modelled simply as a straight tube of uniform cross-
section, and with the eardrum terminating the tube
per-pendicularly. This may be sufficient up to 4 kHz
(or 8-10 KHz if the ends of the canal are left out),
(Blauert, Platte March 1976, Khanna, Stinson February,
1985, Stinson, Lawton June 1989). In Rabinowitz
(October 1981), the upper frequency limit is said to
be 2.5 kHz.

Electrical analoqs

Lumped models have been used to describe the behavior
of the middle ear and the ear canal. The most frequent
type being electrical analogs.

The Zwislocki model from 1962 has been subject to
changes a few times as results of new observations,
and the latest revision is that of Shaw in 1981 (Shaw,
Stinson, May 1981, Stinson, Spring 1989). It is the
middle ear low-frequency model most frequent in use.
The different physical parts of the middle ear are
modelled with a combination of resistors, capacitors
and inductors. The eardrum of a human ear is moving in
a complex way at high frequencies. It may be described
as two areas, one stiffly coupled to the hammer, and
the other one with a loose coupling. The network val-
ues are based on available reliable anatomic data.
Where such data were not available, the values were
adjusted to obtain maximum compatibility between the
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properties of the network and the acoustical data for
normal and pathological ears.

An electrical analog for the ear canal is presented by
Gardner -and-Hawley (1972). It consists of tee-sections
to a number that is depending on the highest frequency
of interest and whether the cross~sectional area of
the canal is assumed to be uniform or not.

Websters horn equation

The one-dimensional horn equation published 1919 by
Webster, is a 2nd order differential equation giving
the relation between sound pressure and cross-
sectional area function of a horn (Webster, 1919)., It
is valid under the following circumstances:

- Only plane waves propadating.

- Rigid walls in the tube.

— Tube radius substantially less than a wavelength.

- Tube radius substantially less than radius of
curvature of the tube center axis.

The horn equation gives analytical solutions only for
certain shapes of the canal. By approximating the
canal with a number of constant cross-section tubes,
numerical calculations are possible (Hudde, June 1989)
as well as four-pole calculations.

A high-frequency asymptotic theory, based on a multi-
scale solution of the one-dimensional horn equation is
given in Friedrich, Rabbitt (Spring 1989), Rabbitt
(December 1988) and Rabbitt, Holmes (March 1988). From
this theory, two methods are derived that are used
together. The first method uses standing wave ampli-
tude measurements in the ear canal and requires press-
ure measurements at many locations along the canal.
The second method uses phase measurements in the ear
canal. The phase method is simpler to apply, but is
not capable of determining the cross-sectional area
function without amplitude data. In combination, these
two methods are used to determine the energy reflec-
tion coefficient at the eardrum, the standing wave
patterns along the length of the canal and the cross-
sectional area function. These are high frequency
methods and not useful at low frequencies. It is
possible to add higher order terms in the asymptotic
series in an effort to extend its validity to lower
frequencies. Another possible way is to use the re-
sulting area function in the horn equation.

The original horn equation has been extended to ac-
count for distributions in three dimensions (Khanna,
Stinson, February 1985). This theory applies to three-
dimensional, rigid-walled tubes that have both vari-
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able cross-section and curvature along the length.
Khanna and Stinson made measurements (100 Hz to 33
kHz) in the ear canal of a cat. The aim of the study
was to compare the measured standing wave pattern with
the extension of the one-dimensional horn equation.
This comparison showed a good result above 12 kHz (9.3
kHz for a human ear).

The scattering matrix approach

Herbert Hudde presents a scattering matrix approach to
higher order modes (Hudde, June 1989). The ear canal
is modelled with a number of constant cross-sectional
tubes. The main limitation is the fact that only ra-
dial modes are considered, although including azimuth-
al modes is not an essential problem. A limit is given
by the increase of computing effort.

The finite-element approach

The finite-element method (FEM) has been used to model
the behavior of the eardrum and the middle ear
(Funnell, Funnell Spring 1989). It implies a numerical
method with huge geometrical possibilities. The limit-
ations of the method is most often the determination
of boundary conditions.

Abom (January 1989) points out the possibility of com-
bining FEM with a four-pole model. Eigenfunctions and
eigenvalues from the FEM-model may be used in the
four-pole model. The advantage of this approach is
that the latter model in this way is able to include
higher order modes, which it ordinarily cannot do.

THEORETICAL MODELS FOR THE HEARING AID

The measurement and modelling of the acoustical pro-
perties of the hearing aid has not been given much
attention. In the case of hearing aid to ear impedance
matching, this is just as vital as measurement and
modelling of the ear. Only two papers have been found
that is really considering acoustical properties of
hearing aids for the purpose of matching to the ear
(Egolf, Leonard, October 1977, Egolf et al., January
1978).

The measurement part of these papers are discussed in
the section "two-load method" above. Egolf/s approach
is based on the four-pole (two-port) theory, that




Report TA118 12
April 1990

requires plane waves. Its prime feature is the simple
connection between devices described with four-poles
{(Iberall, July 1950).

PREDICTION METHODS FOR HEARTNG ATD TO EAR IMPEDANCE
MATCHING

A common rule-of-thumb is that a low output impedance
from the hearing aid will give a sound pressure at the
eardrum that is more or less independent of the ear
impedance. On the other hand a high output impedance
will result in a sound pressure that is proportional
to the ear impedance (Briiel et al. 1975, Johansson,
Sjégren August 1968). A drawback with a low output im-
pedance is that it will cause a considerable increase
in level at low frequencies (Knowles Electronics Inc.
February 1975).

Two methods for predicting frequency response at the
eardrum has been found: Egolf et al. (October 1977,
January 1978, 1988) and Hara et al. (1988).

Egolf et al. present a method based on four-poles. It
is a computer-based method for determination of the
four-pole parameters of the hearing aid, described
above as the "two-load" method (Egolf, Leonard October
1977). In order to create a mathematical model of an
entire hearing aid system, it is necessary to model:

- The mechanism of electroacoustic transduction in the
receiver.

- The mechanism of sound transmission through the
various small cylindrical tubes linking the receiver
with the tympanic membrane.

The narrow tubes of the hearing aid is modelled
according to Iberall (July 1950).

In the first experiment, described in Egolf et al.
(FJanuary 1978) the model was applied in turn, to six
different receiver-earmold combinations using two
receivers and three earmolds, each mounted on a cali-
bration coupler. The result from comparison between
measured and calculated frequency response is good
agreement below 5 kHz.

In the second experiment a hearing aid was used on a
human subject. All acoustical parts involved were
modelled as in the first test. The result of compari-
son as above was good agreement below 1 kHz. Disagree-
ment above this frequency was attributed to the poor
signal-to-noise ratio of the measurement data.
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Although the results are encouraging, the authors
claim that "successful application of the mathematical
scheme to other hearing aid combinations has not yet
(1978) been verified".

An even simpler approach is given by Hara et al.
(1988) for canal type hearing aids. Insertion gain is
predicted from the two following transfer functions:;

- The hearing aid transfer function from acoustical
input to acoustical output when placed in the ear-
canal.

- The transfer function of the outer ear canal (the
part occupied by the hearing aid).

The method is verified on three subjects. Measured and
predicted results agree within +3 dB in the range 200
Hz to 5 kHz. An obvious drawback while making pre-
dictions with this method, is the fact that it takes
less effort to measure the final result than to make
the prediction.
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