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STATISTICAL TREATMENT OF DATA FROM LISTENING

TESTS ON SOUND-REPRODUCING SYSTEMS

Alf Gabrielsson

ABSTRACT

This paper describes various procedures for the statisti-
cal treatment of data from listening tests on loudspeak-
ers, which are performed in accordance with the recommen-
dations given in the IEC Publication 268-13: Listening
tests on 1loudspeakers. The data are supposed to be
ratings 1in one or more selected scales pertaining to per-
ceived sound quality. The following points are discussed:

a) construction of suitable data matrices,

b) use of analysis of variance and related tests,
c) tests for specific comparisons,

d) listening tests including extra variables,

e) estimating reliability of data,

f) critical issues in significance testing,

g) computations, and

h) presentation of results.

Some general comments and selected references conclude the
paper. All tables, fiqures, and formulas appearing in the
paper are also given separately in an enclosed appendix.
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1 INTRODUCTION

Perceived sound gquality of sound-reproducing systems may
be assessed by means of "listening tests". There are many
varieties of such tests. 1In certain tests the listeners
only make preference judgments, for instance, listening to
pairs of systems and indicating which system they prefer
in the respective pair. 1In more sophisticated tests the
listeners rate the selected systems in a number of scales,
which are assumed to reflect some important perceptual
attributes of the reproductions. There is usually also
some scale for the overall evaluation of the perceived
sound quality, for instance, in terms of the "Pleasant-
ness" of the reproduction, and/or the "Naturalness/Fid-
elity" of the reproduction. "Naturalness/Fidelity" refers
to how well the original sound is reproduced, in other
words how "natural" or "true-to-nature" the reproduction
sounds.

In principle a listening test should be designed as an
experiment, in which the experimenter varies the systems
to be judged and has due control over various extraneous
variables. Besides the systems he may also want to vary
the programs (pieces of music, speech etc), or the pos-
itions of the systems, the positions of the listeners etc.
Suitable experimental procedures are discussed in the
IEC-Publication 268-13: Listening tests on loudspeakers
(to be published), and examples of various procedures may
be found in papers by Gabrielsson, Rosenberg & Sjdgren
(1974), Gabrielsson & Sjdgren {1976, 1979), Gabrielsson
(1979), and Gabrielsson, Frykholm & Lindstrom {1979).

This paper presents a discussion of the statistical
treatment of data from listening tests, In accordance with
the recommendations in the IEC-Publication it will be as-
sumed that one of the rating scales is a "true-to-nature"
scale going from 10 (denoting "a reproduction perfectly
true-to-nature"} down to 0 (denoting "practically no
similarity at all with the original performance"), see

Figure 1.




10 + The number 10 denotes a

reproduction which is per-
9 1 Excellent fectly true-to-nature.
8
7 4+ Good
6_
5 1 Fair
4-
3 4+ Poor
2_
The number 0 denotes a repro-
1 + Bad duction so bad that it has practi-
J cally no similarity at all with
0+ the original performance.

FIGURE 1 "True-to-nature" rating scale.

This scale is assumed to represent an interval scale
(equidistant scale steps). It is further supposed that
the sound-reproducing systems are different loudspeakers,
and that they are used for reproduction of some different
programs (for instance, some different pieces of music).
However, the statistical procedures outlined below may
also be used for other rating scales (as "Pleasantness",
"Clearness", "Softness", or what the case may be) con-
structed in similar ways. And, of course, the sound-
reproducihng systems are not necessarily loudspeakers but
may be headphones, amplifiers, turntables, tape recorders
etc, or combinations of such equipments.

Each loudspeaker should be rated for its reproduction of
each program, The total number of stimuli will thus be
the number of loudspeakers multiplied by the number of
programs. The presentation order of all these loudspeak-
€r X program combinations should be randomized, differ-
ently for each subject (listener). To increase { and to
be able to estimate) the reliability of the ratings it is
recommended that each subject makes at least two indepen-
dent ratings for each combination. Furthermore each sub-
ject should make his ratings independently of the other
subjects participating in the test,

The data obtained from the test are thus ratings on the
10 - 0 “true-to-nature" scale for all loudspeaker x pro-
gram combinations. To get as much information as possible
from these data it may be preferable to treat them
intra-individually (that is, within each single subject)
as well as inter-individually (that is, over all subjects




within the same group of subjects). The statistical
treatment may conveniently be divided into two steps:

1) Descriptive statistics. 1In this step the rating data
are entered 1into suitable matrices to make them easily
surveyable, and certain common statistics {e.g. arithmet-
ic means) are computed. The data may also be displayed in
graphical form. Visual inspection of the matrices, the
graphs, and the computed statistics usually lead to
certain conclusions about the loudspeakers under test.

This type of descriptive statistics should always be
applied and generally presents no special difficulties.
It is described in chapter 2 and in parts of chapter 9.

2) Inference statistics. 1In this step the rating data are
analysed further by means of analysis of variance (ANOVA)
and related procedures to test if differences between the
ratings for different loudspeakers (and/or for different
programs) are statistically significant or not, and if
there is an interaction between loudspeakers and programs.
ANOVA may also be used to estimate the reliability of the
data, intra-individually and inter-individually.

The application of this type of statistical treatment is
optional, It requires more work and modre knowledge about
statistics. On the other hand it usually enables the user
to extract more detailed information from the data and to
arrive at more definite conclusions. It is also easily
generalized to more complex listening tests. It is de-
scribed in chapters 3 - 8.

In order to illustrate the points stated above an example
is given in the following, using real data from a listen-
ing test with four 1loudspeakers and five programs
(Gabrielsson & Sjdgren, 1976). Examples of listening
tests including more variables (sound levels, positions
etc) and alternative designs for listening tests are given
in chapter 5, Questions about reliability, assumptions
for the statistical tests, computer programs etc are
treated in chapters 6 - 8, and guidelines for presentation
of the results are given in chapter 9.




2 DATA MATRICES, DESCRIPTIVE STATISTICS

2.1 Individual data matrix

For a certain subject in this listening test the following
data were obtained, see Table I. He made three ratings
per each loudspeaker x program combination. These three
values appear in the upper row of each cell, and their
arithmetic mean (M) is given directly below.

Loudspeakercr
Means for

Program A ! B | C | D programs
[l 1 L]
I | 1
1 767 ] 555 | 675 | 334
M=6,7 | 5.0 ] 6.0 | 3.3 5.3
------------------ R B el I T B
2 667 | 334 | 557 | 334
6.3 ] 3.3 ] 5.7 i 3.3 4,7
------------------ I el el et
3 788 | 222 | 71777 { 333
1.7 | 2.0 | 7.0 | 3.0 4.9
—————————————————— R e ] EEERRNEE
4 788 | 333 | 878 } 3323
1.7 | 3.0 f 7.7 | 3.0 5.3
—————————————————— e e e IR
5 6 76 | 554 | 666 | 555
6.3 | 4.7 ] 6.0 | 5.0 5.5
1 1 i
1 L] L]
Means for | | !
speakers | I |

TABLE I, Example of individual data matrix

Visual inspection of this matrix directly reveals much
about the results. This subject shows a high stability in
his ratings (=high intra-individual reliability) - the
three ratings within each cell differ very little or are
even the same in many cases. The mean ratings for the
loudspeakers (over the five programs) appear in the bottom
margin and indicate that loudspeakers A and C are superior
to loudspeakers B and D. The mean ratings at each program
{(over the four loudspeakers) appear 1in the righthand
margin and suggest that programs 2 and 3 are harder to
reproduce in a "true-to-nature” way than the other pro-
grams, Looking at the means for the loudspeakers within
each program it is easily seen that the differences be-
tween the loudspeakers wvary from program to program and
sometimes differ rather much from the corresponding dif-
ferences between the means in the bottom margin. For
instance, the average difference between loudspeakers A
and B over all five programs is 3,3 (6.9 - 3.6), while the
difference is as small as 1.6 (6.3 - 4.7) at program 5 and
as big as 5.7 (7.7 - 2.0) at program 3. As regards loud-
speakers B and D they get almost the same rating in the




bottom margin (3.6 and 3.5, respectively). For program 1,
however, there is a difference of 1.7 units between these
loudspeakers (5.0 - 3,3). Still more examples could be
added, but these may be sufficient to suggest that there
is an interaction between loudspeakers and programs to be
further studied.

2,2 Group data matrix

The data matrix for a group of subjects is constituted by
a combination of individual data matrices. It may be
represented in many different ways. One way 1is illus-
trated in Table II (on next page) for a group of four sub-
jects, called subjects S, T, U, and V (real data, the data
for subject S are the same as in Table I).

(It should be said at once that four subjects represent a
minimum as regards the number of listeners, see further
7.2, Actually ten subjects were used in the real exper-
iment, but only four of them are included in the present
example to make it easier to follow the computations.)

For each loudspeaker x program combination there are

twelve ratings, three per each subject. Mg denotes the

arithmetic mean of the three ratings by subject S, MT the
same thing for subject T, and so on. Mg (g for group)

denotes the arithmetic mean for the whole group of sub-
jects. (These designations are written only in the upper-
hand left case but are implicit in the other cases) .

The means for loudspeakers in the bottom margin represent
the mean ratings for the loudspeakers, averaged over pro-
grams and subjects. The means for programs in the
right-hand margin represent the mean ratings at the dif-
ferent programs, averaged over loudspeakers and subjects,
(If wanted, each subject's mean ratings for loudspeakers
averaged over programs, and mean ratings at the programs
averaged over loudspeakers, could be entered at appropri-
ate places in the bottom margin and in the right-hand
margin, respectively. They are omitted here not to over-
crowd the matrix but appear, of course, in the individual
data matrices.)
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and V.

Example of group data matrix for subjects
U,

T,

TABLE II.
denoted S,



Visual inspection of this matrix leads to much the same
conclusions as the inspection of Table I (which was the
individual data matrix for subject S): loudspeakers A and
C are superior to B and D, there are suggestions to inter-
action between loudspeakers and programs (compare the dif-
ferences between the 1loudspeakers in the bottom margin
with the corresponding differences between the loudspeak-
ers within each program), and so on. However, a careful
study of Table II reveals, as could be expected, that the
results from this group of four subjects are somewhat daif-
ferent than the results from the single subject S in Table
I. Inter-individual differences in the ratings may be ob-
served, for instance, that subject V has a tendency to use
higher rating values than the other subjects. There are
also suggestions of interactions between loudspeakers and
subjects, that is, the loudspeakers are rated differently
by different subjects.

If wanted, Table II may be supplemented with a very
condensed version of group data matrix like that shown in
Table III. 1In this table all individual values are omit-
ted, and only the arithmetic means for each program X
loudspeaker combination are given (the Mg values in Table

II) together with the means for the loudspeakers and for
the programs in the margins.

Loudspeackercw
Means for
A B C D programs

So~=sQon
w
h
oo
w
»
w
o]
[
N
w
e
L]
~1

Means for
loudspeakers| 6.8 3.8 6.0 3.6

TABLE III. Condensed group data matrix.

Although this matrix is much easier to read, it gives no
information about the dispersion of the ratings around the
means. Some measure of the dispersion could be added, for
instance, the standard deviation or the range of the indi-
vidual means MS,MT etc within each program x loudspeaker

combination. For various statistical reasons, however,
none of these measures is quite satisfactory. Therefore a
matrix like that in Table III should never be given alone;
it must be supplemented with a more complete matrix of the
type shown in Table II (see further 9.1).

The most effective way of taking the variation of the
ratings into account 1is to apply so-called analysis of
variance, which is described in the following chapter.,



3 ANALYSIS OF VARIANCE

Visual inspection of data matrices may give sufficient in-
formation in many cases - especially if the results are
interpreted with caution and are not meant to form the
basis for some far-reaching conclusions. 1In the data used
here certain results seem quite clear, especially that
loudspeakers A and C are better than B and D. However, in
other cases the results may not be so obvious. And even
here one may be in doubt concerning certain questions, for
instance, if there is a "true" difference between loud-
speakers A and C as reflected in their means in the bottom
margin of Table II (6.8 for A and 6.0 for C, a difference
of 0,8 units).

To be able to extract more detailed information from the
data and arrive at more definite conclusions it may be
preferable to use statistical methods 1like analysis of
variance (ANOVA) and related procedures for significance
testing. ANOVA essentially means that the total variance
in the data is split up into different components due to
the different sources ("causes") of variation in a listen-
ing test, such as the loudspeakers, the programs, the sub-
jects, and various types of interactions between these
variables. The statistical tests make it possible to de-
cide, with a certain probability, whether the differences
in ratings between different loudspeakers, and/or between
different programs, are "true" differences, or if they are
due to chance variation. Similarly it is possible to de-
cide whether there are some "true" interactions or not.

The rationale and the assumptions underlying these pro-
cedures are discussed in most texts on statistics and ex-
perimental design (for instance, Hays, 1973; Kirk, 1968;
1972; Winer, 1971), see also under 7 below.

3.1 ANOVA for individual data matrix

An ANOVA on the data in Table I (= the data for subject §)
may be conveniently performed by any of many available
computer programs for ANOVA (see 8 below). The results

are presented in a summary table like Table IV below:




Source of Sum of |Degrees of|Mean |
variation squares | freedom | square |
(55) | (df) | (MS) | F P
1 [ i
1 | 1
Loudspeakers (L) [148.93 i 3 149.64 |177.29 <.,01
I I I
Programs (P) 5.43 | 4 | 1.36 | 4.86 <.01
! | |
L x?P 35.23 | 12 I 2.94 { 10.50 <.01
| I |
Within cell 11.33 | 40 | 0.28 i
] 1 1
1 1 1
Total 200,92 | 59 i |

TABLE IV, Example of summary table for ANOVA on individ-
ual data matrix.

In this table the "mean squares" (MS5) represent the most
important information. Computationally they are obtained
by dividing the "sum of squares" (S5, the sum of squared
deviations around the corresponding mean, for instance,
the deviations of the loudspeaker means from their common
mean) by the "degrees of freedom" (df, an expression for
the number of independent comparisons for the respective
source) . In this case the mean square for loudspeakers
reflects the amount of variance due to differences between
loudspeakers plus a certain "error" variance, Likewise
the MS for programs reflects the amount of variance due to
differences between programs plus error variance, and the
interaction M5 reflects variance due to interaction be-
tween loudspeakers and programs plus error variance. An
independent estimate of the error variance is given by the
"within cell" MS, which reflects the variance of the
ratings within all cells of Table I. The error variance
is thus an expression for the intra-individual varia-
bility. As noted at Table I, this subject was very stable
in his ratings, and the estimated error variance is thus
very low ((Q.28),

Consequently, the bigger the MS for a certain source 1is
relative to the "within cell" MS (=error variance), the
more likely it is that there are "true" (non-random) dif-
ferences between the levels of the respective source (for
instance, between different loudspeakers). This 1is for-
mally tested by means of F tests, which means (in this
case) that the corresponding MS is divided by the "within
cell" MsS. The resulting F values are given to the right
in Table 1V (for example, for loudspeakers equal to
49,64/0.28 = 177.29), These F values are compared to
"critical values" at the respective degrees of freedom as
given in tables of the F distribution, which appear in
most textbooks in statistics. If the observed F value is
higher than the ‘“critical value", it is said to be sig-
nificant at a certain selected probability (percentage}
level,

Using a .01 (1%) significance level the critical value for
the loudspeaker variable is found to be 4.31 (as found in
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an F table for 3 degrees of freedom in the numerator and
40 in the denominator; these are the degrees of freedom

for loudspeakers and "within cell", respectively). The
observed F value, 177.29, is far beyond the critical value
and thus significant at .01 level. In the right-hand

column of Table IV this is denoted by the expression p
<.01, meaning that the probability (p} of getting the ob-
served differences between the loudspeakers by chance
alone ig less than .0l. Consequently the observed differ-
ences may be regarded as "true" differences.

For the program variable the critical F value is 3.83 (for
4 and 40 4f) and for the interaction L x P it is 2.66 (af
12 and 40). In both cases the observed F values are
higher than the critical values. Thus there are "true"
differences between the programs, and a "true" interaction
between loudspeakers and programs.

As used here the F test functions as an "overall" test.
For example, a significant F ratio as regards loudspeakers
tells only that there is at least one significant differ-
ence among all possible combinations of the loudspeakers
(that is, the significant difference may be that between A
and B, and/or that between A and C, and/or between A and
D, Band C, B and D, C and D and/or between more complex
combinations as, say, the mean of A+C versus the mean of
B+D). To find exactly which difference(s) is (are) sig-
nificant, it 1is necessary to perform tests for specific
comparisons, see 4 below. On the other hand a non-sig-
nificant F ratio for the loudspeakers would mean that
there 1s no significant difference at all between the
loudspeakers in any combination.

The interpretation of a significant interaction loudspeak-
ers x programs can often be reasonably made by direct
inspection of the data matrix. Statistical tests for this
purpose are mentioned under 4 below. It is evident from
Table I that the difference between loudspeakers A and B
varies considerably from program to program, that the dif-
ference between the "best"and the "worst" loudspeaker is
bigger for programs 2-4 than for program 5, etc.
Generally it is important to study the meaning of a sig-
nificant interaction, since it may give interesting infor-
mation about the performance of the different loudspeakers
at different types of program material,

It may be interesting to supplement the significance tests
by estimations of the amount of variance accounted for by
the different sources (that 1is, the loudspeakers, the
programs, and the interaction between them), see 6.1.5.
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3.2 ANOVA for group data matrix

Individual ANOVAS as described above may be performed for
each subject in a listening test to get a detailed picture
of each subject's ratings and also to provide estimates of
intra—individual reliability (see 6.1). However, it is
Still more important to analyse the combined ratings from
all subjects in a group by means of an ANOVA on a group
data matrix like that in Table II. Besides 1loudspeakers
and programs now also the subjects and various interac-
tions including subjects enter as variables into the
analysis.

The results from ANOVA on the group data in Table TII are
given in the following table:

Source of variation| S5 ! daf l MS ! F ! P
Loudspeakers (L)  |465.75 | 3 1155.25 | 80.44 |<.01
Programs (P) 11.94 : 4 I 2.99 ; 0.84 : -
Subjects (S) 105. 25 = 3 % 35.08 I 46.16 1(.01
L x P 47,36 : 12 I 3.95 l 3.09 :(.01
L xS 17.34 : 9 1 1.93 } 2.54 ==.01
P X S 42.86 I 12 : 3.57 I 4.70 :(.01
L X P XS 45.98 } 36 = 1.28 : 1.68 =>.01
Within cell 121.33 5160 i 0.76 ! i
Total 857.81 i239 i i i

TABLE V. Example of summary table for ANOVA on group data
matrix (mixed model, case 2 below).

When computing the F values two cases must be dis-
tinguished:

1) The subjects used in _the test constitute themselves the
subject population, and the results from the test are
strictly valid only for these subjects. The corresponding
statlistical model is called a fixed model. In this case
all F values are computed by dividing the respective MS by
the "within cell"™ MS (thus, for loudspeakers 155,25/0.76,
for programs 2.99/0.76, for subjects 35.08/0.76, for L x P
3.95/0.76, and so on), and the critical F values are read
from F tables at the respective degrees of freedom (for
loudspeakers at 3 and 160 df, for programs at 4 and 160,
for subjects at 3 and 160, for L x P at 12 and 160, and so
on).
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2) The subjects are randomly sampled from a certain defi-
ned population of subjects, to which one wants to gener-
alize the results from the listening test. The four sub-
jects in our example were randomly sampled from a society
for high fidelity fans and could thus be considered as
representative for the members of this society (actually
ten subjects were used, but only four of them are included
here to reduce the amount of data). The corresponding
statistical model is called a mixed model, and it is this
model that is used in the present case.

The F values are then computed as follows:

For loudspeakers the error term is the MS for the loud-
speaker x subject interaction (M5 o), and F is obtnined

by MSL / MSLxS' that is, 155.25/1.93 = B0.44, Degrees of

freedom for critical F values are 3 and 9, and the criti-
cal value at .01 level is found to be 6.99. Thus the ob-
sérved F value is significant at .0l level.

For programs the error term is the program x subjects MS
(M5, g} E is obtained by M5, / MS, o, thus 2.99/3.57,

which is less than 1.00 and consequently not significant.
Df are 4 and 12, critical value 5.41.

For the loudspeaker x program interaction the error term
is the triple interaction loudspeaker x program x subjects

(MSLxPxS)' F is obtained by MSLxP / MSLxPxS' thus
3.95/1.28 = 3,09; df = 12 and 36, critical value 2.73 at
.01 level. The interaction is significant at .01 level.

For the subjects and all interactions _including subjects
(L x S, PxS and L x P x S) the error term is the "within
cell" MS. {(In Table IT a "cell" is the same as each com-

bination of loudspeaker X program X subject. There are
thus 4 x 5 x 4 = 80 cells, and there are three ratings in
each cell - as in Table I1.) F for subjects is

35.08/0.76 = 46.16 (critical wvalue for df 3 and 160 is
3.92), for L x S 1.93/0.76 = 2,54 (critical value for df 9
and 160 is 2.53), for P x S 3.57/0.76 = 4.70 (critical
value for 12 and 160 df is 2.31), and for L x P x S
1.28/0.76 = 1.68 (critical value for 36 and 160 df |is
about 1.77).

The term "mixed model" refers to the "mixing" of two
"fixed" wvariables (loudspeakers, programs) and a "random"
variable (subjects). If the subjects are not randomly
sampled but themselves constitute the subject population,
the subject variable is also "fixed"”, and consequently a
"fixed model" should be used in the analysis.

The difference between these two situations is also the
reason for using different error terms in the two models.
For instance, the loudspeaker MS is divided by the "within
cell” MS in the fixed model (in which generalization to
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other subjects is not possible), but by the loudspeaker X
subject interaction MS in the mixed model (in which such
generalization is possible, and where it is thus important
to take a possible loudspeaker x subject interaction into
consideration when testing differences between loudspeak-
ers for statistical significance).

1f a fixed model had been used in our example, the "within
cell™ MS (0.76) should be the error term for all F tests.
In that case the same results are obtained as for the
mixed model except for one thing, namely that the F test
for programs would also be significant (2.99/0.76 = 3.93;
critical value for df 4 and 160 is 3.45). The results may
thus depend on which model is wused 1in the statistical
analysis. From a statistical point of view it is there-
fore important to consider whether the subjects are (or
could reasonably be considered as) randomly sampled from a
certain population or not. If they are, the mixed model
should be used, and the results can be generalized to the
population in question; if they are not, the fixed model
is used, and the results hold only for the subjects used
in the test.

In practice it 1is often difficult to achieve random
sampling of subjects from a defined population. This does
not necessarily preclude the possibility of generalizing
the results. Even if the investigator has not achieved
strict random sampling of his subjects, he might still
find it reasonable to assume that his subjects are re-
presentative/typical for a certain population/category of
listeners and thus have some justification for using a
mixed model and tentatively generalize the results to the
population in question. If this approach appears un-
reasonable, the investigator may prefer to use the fixed
model for his analysis and refrain from generalizing his
results on statistical grounds. However, he is free to
consider a possible generalization on other, non-statisti-
cal, grounds. He may find, for instance, that his results
agree with results from an earlier investigation with
other subjects, or that the results agree with what may be
expected from knowledge of the characteristics of the
different loudspeakers etc. This type of generalization
is thus not statistically based but justified by other
types of information to be stated by the investigator.

The results in Table V may be briefly interpreted as
follows:

Loudspeakers: There is at least one significant difference
between the mean ratings for the different loudspeakers.
Tests for specific comparisons can be made to clarify
which differences are significant (see 4).

Programs: There are no significant differences between the
mean ratings at the different programs (unlike the situ-
ation for the single subject S, see Table IV}.

Subjects: There is at least one significant difference be-
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tween the mean ratings for the different subjects. This
means that different subjects tend to use somewhat differ-
ent parts of the 10 - 0 scale. As noted earlier, subject
V tends to have higher rating values than the other sub-
jects (his mean rating averaged over all loudspeakers and
programs was 6.0), while subject T goes in the opposite
direction (mean rating 4.1, for subjects S and U the mean
rating was in both cases 5.1). Such differences between
subjects may be expected for several reasons and are
relatively less important (sometimes a statistical test
for the subject wvariable is not done at all). The main
gquestion regarding subjects is rather whether the differ-
ences between the 1loudspeakers are the same or not for
different subjects, regardless of the subjects' "mean pos-
itions" on the 10 - 0 scale. The answer to this question
is given by the F test for the L x S interaction, see
below.

The interpretation of the significant interactions is
only briefly discussed here. The L x P interaction shows
up in various ways (see Table 1I), for instance, that the
difference between loudspeakers A and B varies from pro-
gram to program, that the difference between the "best"
and the "worst" loudspeaker is different at different pro-
grams etc. The L X 5§ interaction indicates that the
ratings of different loudspeakers (in average over the
programs) somehow differ with different subjects (please
check! On the other hand a non-significant F value would
mean that the differences between the loudspeakers are
similar for all subjects). Likewise the P x § interaction

suggests that the ratings at different programs {in
average over the loudspeakers) vary with subjects. The
L x P x S interaction was not significant here. If it
happens to be so, this would require a fairly detailed
inspection of the data to see its meaning (it might be,

for example, that the meaning of an L x P interaction is
different from subject to subject). The interpretation of
interactions involving subjects is easier to do by means
of individual data matrices like that in Table I.

How much work should be devoted to interpretations of sig-
nificant interactions depends on the ©purposes with the
test. A significant L x P interaction should be con-
sidered important to understand. In any case, one Or more
interactions involving the loudspeaker variable imply that
the differences between the mean ratings of the loudspeak-
ers {(as given in the bottom margin of Table 1II} are not
quite general, but somehow vary with different programs
and/or subjects - and this may represent important infor-
mation for future work in research or applications.

Estimations of the amount of wvariance accounted for by
different sources of variation are discussed in 6.2.4.
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3.3 ANOVA when each subject makes only one rating per
case.

To increase the reliability of the mean ratings, and also
to facilitate estimations of reliability (see 6), it was
recommended in the introduction that each subject makes at
least two independent ratings for each loudspeaker x pro-
gram combination., 1In the example used above each subject
made three ratings per combination.

However, in some listening tests it may happen that it is
not possible to obtain more than one rating per combina-
tion by each subject. For instance, there may be so many
loudspeakers and/or programs in the test, that it would be
too tiring or lengthy for the subjects to listen more than
once to each combination. Even in a smaller test it may
happen that the available subjects do not have time for
more than 7Jjust one listening per combination etc. 1In an
individual data matrix like that in Table I there will
then be only one value per cell (and thus no need for
computing a mean within each cell). In a group data
matrix there will also be only one value per cell (cell =
loudspeaker x program X subject combination), in other
words there 1is only one value for each subject in each
loudspeaker x program combination (and means like MS’ MT’

etc. in Table II do not appear; however, Mg would still

appear).

ANOVA and related tests may still be performed but with
certain modifications. Since there is only one value per
cell, there can be no "within cell" wvariance, and this
term therefore disappears in the summary table. The
summary table for ANOVA on individual data matrix (compare
Table IV) thus only contains loudspeakers (L), programs
(P) and the loudspeaker x program interaction (L x P) as
variation sources. The F test for loudspeakers and pro-
grams are both made using the interaction MS in the de-
nominator, that is, for 1oudspeakers:MSL / MSpr and for

programs:MSP / MSLxP' An F test for the L x P interaction

is not possible to do in this case.

The F tests for loudspeakers and programs may, however, be
"biased" in a certain way. The correct denominator should
be the "“within cell” MS, which is an estimate of the error
variance (see 3.1). Since there is no "within cell" MS
now available, we use MSLxP as the "best possible" substi-

tute. However, MSLxP is an estimate of variance due to

interaction plus error variance (see again 3.1). If there
is an interaction between loudspeakers and programs, the

numerical wvalue of MSpr will therefore be larger than

what is actually due to error variance alone. Conse-
quently it will be harder to get significant F ratios for
the loudspecakers and the programs in such a case. A
non-significant F test may thus become ambiguous: either
there are in fact no "true" differences between the loud-
speakers in average over the programs (between the
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programs in average over the loudspeakers, respectively),
or the F test is not sensitive enough to detect the "true"
differences because of the too big denominator.

In the summary table for ANOVA on group data matrix the
"within cell" term likewise disappears (compare Table V).
If the fixed model is used (see 3.2), all F tests (those

for L, P, S, L xP, L xS and P x S) use MSLxPxS as their

denominator (and it is not possible to have an F test for
the L x P x § interaction). Since MSLxPxS is an estimate

of the L x P x 5 interaction plus error variance, the F
tests may be biased (if there is a "true" L x P X S inter-
action, the denominator will be “"too large"), and non-sig-
nificant F ratios may be ambiquous in analogy with what
was described above. 1If the mixed model is wused, the F
tests for 1loudspeakers, programs and the loudspeaker x
program interaction can still be performed as described in
3.2. However, one then usually refrains from making F
tests for subjects and interactions involving subjects,
since such F tests would require a "within cell” MS in the
denominator’,

ANOVA and F tests can thus be performed in listening tests
in which there is only one rating per cell. However,
certain tests may be insensitive and/or ambiquous, and
certain other tests cannot be performed. With regard to
the formulas for specific comparisons in chapter 4, these
formulas can still be used with two modifications:

l) When an Mswithin ce]l] 2PPears in a formula, it should

be replaced by the MS for that interaction that was actu-
ally used as denominator in the corresponding E test, and
the degrees of freedom are those for this Interaction.
For example, in formula (1) in 4.1 MSwithin cell should be

replaced by MSLxP and the degrees of freedom are those for
L x P in Table IV (that is, df = 12).

2} The value of n (= number of ratings in each cell) will
be 1 in all formulas.

As seen above the statistical analysis is simpler and more
conclusive if there are more than one rating per cell,
And as regards reliability, it is intuitively clear that
the mean of two or more ratings is more reliable than only
one single rating. It is not even possible to get a stat-
istical estimate of the intra-individual reliability, un-
less there are at least two ratings per cell (see 6.1).
However, the inter-individual reliability may be estimated
by procedures described in 6.2 (in formula (12) in 6.2.3
the 8S and df for "within cell" are simply dropped from
the formula).

Although all these circumstances point towards using more
than one rating per case, there may still be defenses for
not doing so. It is sometimes easier to get more subjects
and have them do one rating per 1loudspeaker x program
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combination than to have a smaller number of subjects do
more ratings per combination. Or it may be known from
some earlier listening tests, that the subjects in general
have satisfactory intra-individual reliability, so that
one has confidence in their rating ability, even if they
are allowed to make only one rating per case. Examples of
listening tests both with three ratings per case and with
one rating per case may be found in Gabrielsson, Frykholm
& Lindstrom (1979).

If there are many loudspeakers and/or programs in a test
quite another alternative is to have some subjects listen
to all loudspeakers but only for one program, some other
subjects also listen to all loudspeakers but with another
program etc, that is, use one group of subjects per each
program. This alternative is called a "split-plot" design
and is discussed in many possible variants in 5.3. It may
then be reasonable to have each subject do two (or more)
ratings for those loudspeaker x program combinations he
listens to.
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4 TESTS FOR SPECIFIC COMPARISONS

A significant F value for loudspeakers means that there is
at least one significant difference among all possible
pair combinations of loudspeakers { A-B, A-C, A-D, B-C,
B-D, and C-D in our case) or among more complex combina-
tions (as the mean of A+B versus the mean of C+D etc).
The F test does not tell how many or which of these dif-
ferences are significant. This has to be studied by means
of various tests for specific comparisons. The same line
of reasoning applies to significant F values for the pro-
grams or for the subjects. However, we will 1limit the
discussion to deal only with comparisons involving two
loudspeakers at a time (A-B, A-C, A-D etc}).

There are several alternative tests available for specific
comparisons, and there is unfortunately no complete agree-
ment among statisticians as to their use (see further in
4.2). However, the following procedures seem to be fairly
commonly agreed upon. Four different situations will be
discussed: planned independent comparisons (4.1), planned
non-independent comparisons (4.2), non-planned comparisons
(4.3), and specific comparisons within single programs
(4.4).

4.1 Planned independent comparisons

Suppose that it was planned before the listening test
(=before any data had been collected) that it for some
reason was especially important to test whether loudspeak-
er A was better than loudspeaker B, This is called a
planned (or a priori) comparison. This may be performed
with a t test.

In the case of an individual data matrix like Table I the
test formula would be:

M, - M
(1) £ = A B _ 6.9 - 3.6 = 17.37
V&MSw.cell/np Vﬂz x 0.28)/(3 x 5)
where MA and MB are the means for loudspeakers A and B
given in the bottom margin of Table I, MS is

within cell
given in Table IV, n = number of replications (ratings) in
each cell in Table I, and p = number of programs.

The degrees of freedom for this test are the same as for
the "within cell"” term in Table IV, that is, 40. The
critical value for df = 40 at .01 level, one-tailed test
(which is used when the test deals with a difference in a
certain direction as here, that is, if A is better than B)
is 2.42 as seen in a table for the t distribution. Since
the observed t value is higher than "the critical value,
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the difference 1is significant at .01 level. (If the
interest was in testing whether it was any difference be-
tween A and B, regardless of direction, a two-tailed test
should be used. This changes nothing in the formula, but
the critical value will be different as found in a table
for the t distribution.)

In the case of a group data matrix like that in Table 1II
the same test would be for the mixed model

M, - M

B \[Tmsms/mp V(2 x 1.33)7(3 x 4 x 5)

where MA and MB are found in the bottom margin of Table

11, MS . in Table V, n = number of replications (ratings)

under each condition (each subject made three ratings for
each loudspeaker x program combination); s = number of
subjects, and p = number of programs. The degrees of
freedom are the same as for L x S in Table Vv, that is, 9.
The critical ¢t value for df = 9 at .01 level, one-tailed
test, is 2.82, Thus the difference is significant at .01
level.

In_the fixed model the Msw.cell is used instead of MSLxS

and the degrees of freedom are those for the "within cell"
term. For the same situation that would give

My~ Mp 6.8 — 3.8

A
t = . =
\/QMSw.cell/nSp \/(2 x 0.76)/(3 x 4 x 5)

(3) = 18.75

Critical value for df = 160 at .01 level, one-tailed Lest,
is about 2.35.

The t test procedure may be used for more than one planned
comparison, if these comparisons are independent of each
other.

Roughly this means that any two (or more) planned compari-
sons are "non-overlapping”, do not have any loudspeaker in
common. With four loudspeakers as here only two planned
independent comparisons can be formed at a time, for
instance, the comparisons A-B and C-D, or the compar isons
A-C and B-D, or the comparisons B-C and A-D etc. It would
not be possible to take, say, the two comparisons A-B and
A-C because they have loudspeaker A in common and are thus
not independent, nor would it be possible to take A-D and
B-D because they have loudspeaker D in common, and so on.

The simple t test procedure is thus applicable for planned
independent comparisons. With a certain modification it
may also be used for planned non-independent comparisons.,
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4.2 Planned non-independent comparisons

Planned comparisons of interest to the investigator may of
course include non-independent comparisons, for instance,
the comparisons A-B and A-C, or A-B and B-C, or A-B, A-C,
and C-D (three comparisons in the last example) etc.

In this case t tests can still be performed according to
the formulas in 4.1, but the significance level should be
distributed over the number of tests that are made. If we
continue with the .01 level used for all earlier examples,
and if we want to do two non-independent comparisons, each
of these single tests should be performed with .01/2 =
.005 significance level. If there were three non-indepen-
dent comparisons, each single test should be made with
.01/3 = .0033 level etc.

In case of .05 significance level two non-independent com-
parisons would be tested at .05/2 = ,025 level, five
non-independent comparisons at .05/5 = ,01 level, and so
on. In fact the significance level thus refers to the
coliection of all tests made (for instance, to the
collection of two non-independent comparisons, or of five
non-independent comparisons etc, whatever is the case).

This procedure (often called Bonferroni t statistics) does
not change anything in the computations of the t wvalues,
The only difference is that the critical t value will be
different, since the significance level for each single
test is diminished. As an example suppose that it was
planned to make the comparisons A-B and A-C for the data
in the group data matrix (Table II). The two t tests are
performed as shown for the A-B comparison in formula (2).
For A-B the observed t value is 12.00, and for A-C it is
3.20 (computed from the same formula only replacing MB

with MC). Since there are two non-independent tests, the

significance level for each of them is .01/2 = .005, and
the critical t value 1is found to be 3.25 (df=9,
one-tailed) as compared with 2.82 for independent compari-
sons. The difference A-B is clearly significant, while
the A-C difference is just on the limit of being signifi-
cant (in such a borderline case one would probably 1look
for some other relevant information as guideline for a
conclusion).

Obviously it is harder to get significant t values for
non-independent than for independent comparisons. And the
more non-independent comparisons the more difficult it
will be, since the significance level for the single tests
diminish in proportion to the number of comparisons (and
the corresponding critical t wvalues thus increase).
Consequently this procedure may get very insensitive to
detect "true" differences as the number of comparisons is
increased. Therefore it should only be used for a rela-
tively small number of non-independent comparisons., For a
big number of comparisons it may be better to use the pro-
cedure described below in 4,3.
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A technical difficulty is that this procedure may require
critical t values at significance levels which are not
found in common tables for the t distribution (for in-
stance, if a .05 level is distributed over three compar i-
sons, each comparison should be performed at .05/3 = .017
level, which 1is not listed in common tables). There are
ways of computing approximate critical t values, and it is
also possible to use special tables by Dunn (reproduced in

Kirk, 1968). The problem can also be avoided by not
sticking so strictly to the commonly used significance
levels of .05 or .01 (see 7.1). For instance, 1in the

example above one could perform each of the single t tests
at .01 Ievel, which means that the significance level for
the collection of these three tests would be (3 x .01) =
.03,

The rationale behind these procedures and some in the
following, is beyond the scope of this paper. Detailed
discussions may be found in Kirk (1968, 1972), Hays (1973)
and Winer (1971). Suffice it here to say that the dis-
cussions deal with considerations about planned and non-
planned comparisons, about independent and non- independent
comparisons, and about various conceptual units for the
significance level. A general principle is that the more
specific comparisons that are made, the less sensitive the
corresponding tests will be for detecting "true" differ-
ences, Conversely, the fewer (and independent) compari-
sons that are made, the more sensitive the corresponding
tests will be for detecting "true" differences {if there
are any).

The t test procedures for planned comparisons described in
4.1 and 4.2 do not presuppose a significant overall F
test. In fact they may be applied directly to the speci-
fic planned comparisons without a prior F test. However,
since the underlying ANOVA procedure provides much
valuable information regarding variances, estimates of
reliability etc, it is still recommended to perform the
ANOVA procedures as a first step.

4.3 Non-planned comparisons

If the investigator has no specific hypotheses or plans
for doing certain selected comparisons, but simply wants
to know if the loudspeakers in his test differ at all when
rated on the 10 - 0 scale, the data are first analysed by
ANOVA and F test. If the F test for the loudspeakers
turns out to be not significant, the conclusion 1is that
there are no differences between the loudspeakers in ques-
tion, If the F test is significant, there is at least one
significant difference somewhere among the loudspeakers,
and he may want to know which specific difference(s) is
(are) significant. 1In that case he would apply procedures
for non-planned (a posteriori or post-hoc) comparisons.

There are various procedures for such comparisons. The
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one proposed here is known as Tukey's HSD (Honestly
Significant Difference) procedure. In our case with four
loudspeakers there are six possible pairwise comparisons
(A-B, A-C, A-D, B-C, B-D, and C-D). Any of these 1is
declared as significant, if the corresponding difference
between means exceeds the computed value for HSD.

For the case with the individual data matrix (Table I} HSD
is computed as follows:

et

(4} HSD = 3_01,40Wsw_cell/np = 4.70 \/0.28/(3 x 5) = 0.66

The value of g is given 1in tables of the "studentized
rande statistic". The value 4.70 here is found in such a
table for the case of .01 significance 1level, df = 40
(these two values indicated in the suffices to g in the

formula), and four means (loudspeakers). Msw.cell is

found in Table IV, n = number of replications in each
cell, and p = number of programs,

Looking at the means in the bottom margin of Table I, we
conclude that the (absolute) difference between A and B, A
and D, B and C, and between C and D all exceed the com-
puted HSD of 0.66. Thus these four differences are sig-
nificant, while the difference between A and C is not sig-
nificant, nor the difference between B and D.

Applied to the group data matrix (Table II) and the mixed
model case HSD 1s given by

(5) HSD = 3.01 p MSLxs nsp = 5.96 Vﬂ.93/(3 x 4 x 5) = 1.07

The g value is looked up for .01 level, d4f = 9, and four
means. MSLxS is found in Table V, n = number of repli-

cations (defined as in formula (2)}), s = number of sub-
jects, and p = number of programs. Looking at the means
in the bottom margin of Table 1I, we conclude that the
differences associated with Aa-B, A-D, B-C, and C-D are
bigger than HSD and thus declared as significant, while
the differences associated with A-C and B-D are not sig-
nificant.

In the case of a fixed model M5 is used 1instead of

w.cell

MSLxS and the degrees of freedom are those for MS

Thus:

w.cell

(6) HSD =q 01,160‘\/M8w_ce11/nsp = 4.50 \/0.76/(3 x 4 x 5) = 0.50

In this case the difference associated with A-C is also
significant besides the differences given above for the
mixed model, The difference A-C is thus declared signifi-
cant if the conclusions are restricted to the four sub-
jects in the test (that is, using a fixed model), but not
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if the intent is to generalize from these subjects to the
population from which they are drawn (that is, using a
mixed model).

The tests performed by the HSD procedure are two-tailed
tests, that 1is, they test for differences regardless of
the direction of the differences. This is in 1line with
the typical a posteriori situation, in which the investi-
gator has no specific comparisons in mind but only wants
to see if the loudspeakers differ at all. It may also be
noted that the significance level in the HSD procedure
refers to the collection of all tests (however, in a
somewhat different way than for the Bonferroni t stat-
istics).

4.4 Specific comparisons within single programs

The investigator may have planned to compare certain_loud-
speakers within one of the programs used in the listening
test. These tests follow the principles described in 4.1
and 4.2. If he has planned to make a single comparison
(say A-B) or two independent comparisens (for instance,
A-B and C-D) within a certain program, he may use the t
test procedure in 4.1. The formulas given there apply
here too with two modifications: the means in the
numerator should of course be the means for the respective
loudspeakers within the selected program, and further the
value of p (= number of programs}) is taken away from the
denominator. To take but one example: Assume that we
planned to test whether loudspeaker C is better than D at
program 1 in the group data matrix (Table II), using mixed
model. The test would be (compare formula (2)):

M, - M
(7) £ o= = C D - 5.9 - 4,2 = 3.00

\/ZMSLXS / ns \/(2 X 1.93)/(3 x 4)

which turns out to be significant (critical value 2.82 for
df=9, one-tailed as at formula (2)).

If the planned comparisons within the program in question
are non-independent, procedures analogous to those of the
Bonferroni t statistics in 4.2 are used, that is, with the
significance level distributed over the number of compari-
sons.

If the ANOVA and F tests have revealed a significant in-
teraction between loudspeakers and programs, this implies
that the differences between the loudspeakers somehow vary
from program to program. These wvariations are often
obvious enough from simple visual inspection of the data
matrix. For instance, in the group data matrix (Table IT)
it is evident that loudspeakers A& and C are the best for
all five programs, but that their superiority is most
marked for programs 2-4 and somewhat less marked for pro-
grams 1 and 5. This information would probably be suffic-
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ient for the investigator {(he could then try to understand
why the difference between the loudspeakers is bigger for
certain programs than for others). If, for some reason,
he wants a formal statistical test on the differences be-
tween the loudspeakers within each of the programs, one
simple way would be to compute Tukey's HSD with respect to
the single programs (instead of over all programs as il-
lustrated in 4.3). For the group data matrix and mixed
model formula (5) can be used but taking away p (= the
number of programs) under the square root sign. The re-
sulting HSD is 2.38. The difference between any two loud-
speakers within any of the programs must thus exceed 2.38
to be significant,. Inspecting the data in Table II
reveals that loudspeaker A is significantly different from
B for all programs except for program 1, and from D for
programs 2-4, Loudspeaker C 1is significantly different
from B and from D for programs 2-4, but not for programs-1
and 5.
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5 LISTENING TESTS INCLUDING EXTRA VARIABLES

Besides 1loudspeakers and programs an investigator may
sometimes want to include more independent wvariables in
his 1listening test. For instance, some or each of the
programs may be presented at different sound levels, the
positions of the loudspeakers and/or of the listeners may
be varied etc. The more variables are included, the more
complex the analysis will be - and the more important it
is to use an efficient procedure 1like ANOVA and ac-
companying tests. The statistical procedures are in most
cases rather straight-forward generalizations of those
described earlier. In the following some examples of
possible analyses are given for the case with one extra
variable (5.1) and two extra variables (5.2).

When extra independent variables are included in a test,
the total number of listening conditions may sometimes
become so big that it would be too tiring or wunpractical
to have all subjects make ratings under all conditions.
In such a case one alternative is to have some subjects
take part in the test under certain listening conditions
and have some other subjects participate under certain
other conditions. Depending on the circumstances many
different combinations may be considered, the subjects may
be divided into still more sub-groups participating under
different conditions, and so on. Many examples of such
possibilities (so called "split-plot designs"} and the
related statistical procedures are given in 5.3.

5.1 One extra variable

The example given in this section uses differences in
sound level as an extra variable (besides loudspeakers and
programs). The same principles apply, of course, to any
extra variable - for instance, differences in listening
positions ot differences in loudspeaker positions.

5.1.1 Individual data

In the listening test used as example here each program
was actually presented at two different sound levels,
called "high" and "low" in the following. The individual
data matrix for subject S is given here:
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Loudspeaker
A | B f C ! D
| f ! Means for
Level High|Low |High|Low |High|Low {High|Low |programs
1 1 i 1 1 i 1
I ] L] ] L ¥ 1
7 |6 |5 |6 |6 {7 |3 |6
Program 6 | 6 15 |5 {7 |6 |3 | 4
1 K i 7 | 5 | 5 | 5 | 7 | 4 | 4
6.7 |6.3 5.0 |5.3 |6.0 ]6.7 3.3 |4.7 [5.5
------------- e e el el e B e B it
6 |8 13 t4 |S t7 13 |6
6 |7 I3 4 s 17 13 |5
2 7 |8 | 4 4 7 17 14 |4
6.3 |7.7 |13.3 |4.0 |5.7 }7.0 3.3 |5.0 |5.3
------------ il e e e e T e
7 18 |2 |4 |7 s |3 {3
8 18 |2 }+3 t+7 |6 |3 |3
3 8 |8 |2 |4 |7 |8 | 3 {3
7.7 18.0 2.0 3.7 }7.0 |6.3 ]3.0 3.0 |5.1
------------- R e R e R e e B et
7 17 3 |4 18 +7 13 13
8 13 13 |3 |7 7 13 |3
4 8 |7 |3 | 4 |8 |8 |3 | 3
7.7 15.7 3.0 13.7 7.7 17.3 3.0 |3.0 }5.1
------------- e el e e e e e
6 |8 |5 |14 |6 |8 |5 |7
7 17 5 15 e |7 |5 15
5 6 18 |4 |4 J]e6 |7 |5 }5
6.3 {7.7 14.7 (4.3 |6.0 |7.3 |5.0 |5.7 |5.9
L 1 1 ] i 1 1
1 1 I 1 1 1 4
Means for | | i I ! I t
levels 6.9 |7.1 |]3.6 |4.2 |6.5 |6.9 }]3.5 4.3
| | I
Means for | I |
loud- 7.0 | 3.9 | 6.7 | 3.9
speakers | | I

TABLE VI. Example of individual data matrix for listening
test with three independent variables: loudspeakers, pro-
grams, and sound levels.

The data under the "High" level are the same as those in
Table I (although written vertically here), so the new
data are those under the "Low" level. The mean of the
three ratings (replications) within each cell is written
at the bottom of the respective cell.

Visual inspection of such a matrix may in many cases give
enough information. However, to be able to look at more
details and facilitate the conclusions an ANOVA may be
performed giving the following result:
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Source of variation| S8S daf MS F p
Loudspeakers (L) 262.43 3 87.48 171.53 <,01
Sound level (SL) 7.01 1 7.01 13.75 <.01
Programs (P) 10.08 4 2.52 4,94 <.01
L x SL 1.49 3 0.50 <1.0 -

L x P 45.12 12 3.76 7.37 <.01
SL x P 8.95 4 2.24 4.39 <.01
L x SL x P 14.38 12 1,20 2.35 >.01
Within cell 40.67 80 0.51

Total 390.13 119

TABLE VII. Summary table for ANOVA on data in Table VI.

As in Table IV all F tests are performed by dividing the
respective MS by the "within cell” MS. The resulting F
values are significant at ,01 1level for lnudspeakers,
sound levels, programs and the interactions loudspeakers x
programs and sound levels x programs.

No detailed interpretation of these data 1is given here.
Note that although there are significant F tests for loud-
speakers, sound levels, and programs, there are also sig-
nificant interactions (L x P and SL x P}, which necessi-
tate a careful inspection of the data matrix (it is
obvious, for example, that the effect of different sound
levels varies in rather complex ways for different cases).

5.1,2 Group data

The group data matrix for the four subjects can be written
as Table II but doubled - that is, Table II represents the
data at the "high" level, and consequently a similar rep-
resentation must be made for the "low" sound level, These
data are not given here, but the summary table for the
corresponding ANOVA should have the following principal
appearance:
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Source of variation 55 af MS F p
Loudspeakers (L) 3
Sound level (SL) 1
Programs (F) 4
Subjects (5} 3
L x SL 3
L xP 12
L x5 9
SL x P 4
SL x S 3
P xS 12
L x SL x P 12
L x SL x S 9
L x P x5 36
SL x P x S 12
L x SL x P x 5 36
Within cell 320
Total 479

Table VIII. Schema for summary table in ANOVA on group
data in listening test including loudspeakers, programs
and sound levels as independent variables.

In analogy with what was said in 3.2 {especially regarding
Table . V) two cases must be distinguished when computing F
values:

1) If a fixed model is used (that is, the subjects used in
the test constitute the subject population and the results
are valid only for these subjects), all F values are com-
puted by dividing the corresponding MS by the "within
cell® MS. (In this case a cell is constituted by each
combination of loudspeaker x program x sound level x sub-
ject.)

2) If a mixed model is used (that is, the subjects are
randomly sampled from a certain population to which the
results are generalized), the F values are computed in
analogy with what was described for the mixed model in
connection with Table V. The M5 for each of the three
nfixed" variables (loudspeakers, sound levels and pro-

grams) are divided by the MS for their respective interac-
tions with subjects:

MS, / MSp g

MSSL / MS

MSP / MS,

SL x S

X 5
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The MS for each of the two-factor interactions of these
variables are divided by the MS for the respective three-
factor interaction including subjects as the third factor:

M / M5

[a]
L x SL

MSL x P / MS

L x SL x S

L x P x S

M / MS

Ssp x P SL x P X S

The MS for the three—-factor interaction of the fixed vari-
ables is divided by the MS for the four-factor interaction
with subjects as the fourth factor:

MSL X 5L x P / MS

L x SL x P x S

Finally for all terms involving subjects (S, L x §, SL X
S, PxS, LXxSL XS, LxPx§S, SLxPx§5, and L x 8L x
P x S) the corresponding M5 is divided by the "within

cell" MS (that is, MSs / MS MSL X S / MS and

w.cell’ w.cell’

s0 on}.,

5.1.3 Tests for specific comparisons

Tests for specific comparisons in a 1listening test with
three variables (loudspeakers, sound levels, programs)
follow the principles described in chapter 4. The dis-
tinction between planned independent comparisons, planned
non-independent comparisons, non-planned comparisons and
comparisons within single programs applies here too. The
formulas given in chapter 4 can be used with the following
modifications:

a) The desired means (the two means involved in the com-
parison in question) are written in the numerator. (This
does not apply to formulas for computation of HSD, since
no means appear there.)

b) The MS term in the denominator (or under the square
root sign in HS5D formulas) should always be the error term
in the corresponding F test. For individual data and for
the fixed model with group data this 1is very simple,
because the error term for all F tests is the "within
cell"” MS., For the mixed model with group data there are
several different error terms as described in 3.2 and
5.1.2, and care must be taken to wuse the same MS in
formulas for specific comparisons as for the corresponding
F test - for example, in a specific comparison involving
two loudspeakers the MS term will thus be the M3 for loud-
speaker X subjects interaction (MSLxS).

¢) The term to the right of the MS term in formulas 1-7
should equal the number of observations from which each of
the actual means are computed, This number 1is thus
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obtained by multiplying the number of replications (des-
ignated n in these formulas) with the number of "levels”
in each other variable over which the means 1in question
are computed (that is, over the number of subjects and/or
over the number of programs and/or over the number of
sound levels).

The degrees of freedom for tests on specific comparisons
are the same as for the MS term, when it is used as error
term (denominator) in the corresponding F test.

An example is used to illustrate the above points: Sup-
pose data were available for the group data matrix men-
tioned (but not given) in 5.1.2, and that the mixed model
was applicable (subjects randomly selected from a popu-
lation). Suppose further that we planned before the 1lis-
tening test to test whether loudspeaker C was better than
loudspeaker D in average over all programs, sound levels,
and subjects, That would result in a t test of the type
given in formula (2), but with the actual means for C and
D entered into the numerator. The MS term in the denomi-

nator should be MSLxS (since this is the error term for F

test on loudspeakers in the mixed model, see 5.1.2). The
term to the right in the denominator would be the product
of the number of replications x the number of subjects x
the number of programs x the number of sound levels, which
equals the number of observations from which each of the
means in the numerator are computed. The degrees of
freedom would be those for MSLxS from the ANOVA procedure

(Table VIII).

If this comparison between C and D was planned only for
one of the programs, there would be no difference as
regards the MS term (still MSLxS) and degrees of freedom.

The means have to be replaced by their respective means
for this selected program, and the term to the right in
the denominator would be the product of the number of
replications x the number of subjects x the number of
sound levels, which equals the number of observations from
which these means are computed.

5.1.4 One extra variable only for certain programs

Assume that two different sound levels were used only for,
say, two out of five programs in a listening test. This
situation could be analysed in different ways. One way
could be to regard the added levels for the two programs
as new "programs", so that in fact the analysis is made as
if there were seven "programs" {(the five "real" programs
plus two of them at another sound level). This would
correspond to the data matrices of Table T (for a single
subject) or Table II (for a group of subjects), and the
ANOVA would take the form of that in Table IV or Table V,
respectively.

For a more detailed analysis regarding the effects of dif-
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ferent sound levels it may be interesting to make a separ-
ate ANOVA restricted to those two programs, which were
presented at different levels. Such an analysis would
thus include three variables: the loudspeakers, the (two)
programs, and the sound levels and would be of the type
shown in Table VII (for a single subject) or Table VIII
(for a group of subjects).

Tests for specific comparisons would follow the principles
described in chapter 4 and in 5.1.3.

5.2 Two extra variables

Besides including differences in sound level (used as
example in 5.1) one may also include differences in the
position of the listeners or of the loudspeakers, The
analysis of data in such a listening test with two extra
variables represents a straightforward generalization of
the procedures described in 5.1.

An individual data matrix like that in Table VI must then
be extended to include also the position variable, and the
corresponding ANOVA likewise represents an extension of
that in Table VII to include four independent variables
(loudspeakers, sound levels, programs and positions) and
all possible interactions between them. The analysis of
group data would represent an extension of that in Table
VIII to include five wvariables (loudspeakers, sound
levels, programs, positions and subjects) and all possible
interactions between those variables. The way of making F
tests and making tests for specific comparisons follows
the principles described in chapter 4 and in 5.1.3.

Still more variables may be included in a 1listening test
(for instance, characteristics of the subjects as age,
sex, hi-fi experience etc), and their effects may be
investigated by analogous extensions of the ANOVA. The
more variables included, the more complex the analysis
will be - on the other hand, the more information may be
obtained. Such questions must be given careful consider-
ation when designing a listening test.

5.3 Some alternative designs ("split-plot" designs}

In all earlier examples it has been assumed that each sub-
ject 1listens to all combinations of loudspeakers X pro-
grams {as illustrated in Table II), or to all combinations
of loudspeakers x programs x sound levels (Table VI) etc.
This type of design is often called "repeated measurements
on the same subjects", sometimes "randomized block fac-
torial design”.

If the number of variables in a listening test is in-
creased (or if the number of loudspeakers and/or programs
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is very big), it follows that each subject gets more and
more to do, and the test may be lengthy and tiring (even
though it may be split up into several sessions separated
in time}. In such a situation an alternative may be to
apply the principle of "repeated measurements on the same
subjects" only to certain variables but not to other vari-
ables. This type of designs is often called "split-plot"
designs (sometimes "mixed designs").

5.3.1 Example of "split-plot" design

As an example consider the situation that an investigator
has selected four loudspeakers and five programs {(re-
sulting in a total of twenty loudspeaker x program combi-
nations), but also finds it interesting to use two differ-
ent listening positions in the room. If the "repeated
measurements" principle is used, this doubles the work for
each subject. An alternative could be to have some sub-
jects listen to all loudspeaker x program combinations in
one of these positions, and some other subjects in the
other position. The "repeated measurements principle"
would thus apply to loudspeakers and to programs but not
to positions. An individual data matrix and corresponding
ANOVA would still Took 1ike Tables I and IV. A group data
matrix may be arranged as follows (labels in margins
omitted):

Loudspeakerct

A ] B | C | D
| I |
Program | Program | Program | Program

Position 1 2345]12345(1 2345123435
Subject } i }
S | | |
1 T I ! I
u I I I
v I I |

______________________ e L
| | |
W | | |
2 X | I |
Y | | I
2 | | !
1 [ 1
1 1 1
I I |
! I {

TABLE IX. Group data matrix for a "split-plot" design in
a listening test with loudspeakers, programs, and pos-
itions as independent variables.

Assuming that eight subjects are available, they are
randomly divided into two groups of four members each, and
it is also randomly decided which group should use which
listening position. All eight ~subjects 1listen to all
twenty loudspeaker x program combinations ("repeated
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("non-repeated measurement",
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uses only one position

subjects 8, T, U, and V have

position 1, but subjects W, X, Y, and Z have position 2).

The summary table of an ANOVA for this case may have the
following appearance:

Source of variation SS df MS F p
Between subjects: 7
Positions (PO) 1
Subj. within groups 6
Within subjects: 472
Loudspeakers (L) 3
L x PO 3
L X subj.w. groups 18
Programs (P) 4
P x PO 4
P x subj.w. groups 24
L xP 12
PO x L x P 12
L x P x subj.w. groups 72
Within cell 320
Total 479
TABLE X. Summary table for ANOVA of the "split-plot"
design in Table IX.
The terms "Between subjects" and "Within subjects" in

Table X are not necessary to include. They illustrate the

two "parts" of this
ments" part including

"repecated measurements"

programs. The §SS
"Within subijects"

nacion,

design,
the

the "non-repeated measure-

position variable and the

part

and df for

are simply
respectively, for the sources following them in the table.
It is assumed, as in earlier examples, that each subject
makes three ratings for each loudspeaker x program combi-

including loudspeakers and

"Retween subjects" and
the sum of the SS and df,

The F tests are performed as follows:

1) If a fixed model is used (the results apply only to the

used subjects), all F values are computed by dividing the
corresponding MS by the "within cell" MS. (In this case a
"cell™ is constituted by each combination of loudspeaker x
program x subject x position.)

2) If a mixed model is used

randomly from a

(the
population

subjects were sampled
which the results are

generalized), the following computations apply:
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MSpo / MSsubj.w.groups

MSL / MSL X subj.w.dgroups

MSL < PO / MS

MSP / MS

L x subj.w.groups

P X subj.w.groups

MSP x PO / MS

MSL x P / MSL Xx P x subj.w.groups

MSpg x L x p / MS

P x subj.w.groups

L x P x subj.w.groups

F tests for the remaining terms (L x Subjects w.groups, P
X Subjects w. groups, and L x P x Subjects w. groups)
may be made by dividing their respective MS by the "within
cell” MS.

Tests for specific comparisons follow the principles des-
cribed in chapter 4 and 5.1.3. The following examples
apply for the mixed model. A test of the difference be-
tween two loudspeakers 1in average over programs, pPos-—
itions, and subjects would have MS as

L x subj.w.groups
error term (and the corresponding df} divided by the
product of the number of programs x the number of pos-
itions x the number of subjects within each group x the
number of replications., A test of the difference between
two loudspeakers at one of the listening positions would
also use MS subj.w.groups but divided by the product of

‘the number of programs X the number of subjects within
each group x the number of replications.

In the "split-plot" design used here (Table IX) it might
be intuitively clear that the possible effect of different
listening positions is not investigated as efficiently as
regards differences between loudspeakers and between pro-
grams. Since there are different subjects in the two dif-
ferent 1listening positions, possible differences between
the subject groups will be confounded with possible dif-
ferences between listening positions. Tests on "repeated
measurements" variables are in general more sensitive than
tests on '"non-repeated measurements" wvariables, since
variation within individuals is typically smaller than
variation between individuals.,

5.3.2 Further applications of the "split-plot" design

The above analysis may be attractive to use 1in 1listening
tests in which two (or even more) subjects listen
simultaneously in the listening room. The subjects then
necessarily have different listening positions and by the
above analysis not only the effects of different loud-
speakers and programs can be studied but also the effects
of different 1listening positions. However, the test
regarding the position variable may not be very sensitive.
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If it is desired to increase the sensitivity, either the
number of subjects should be increased or "repeated
measurements” should be applied also for the position
variable (in the latter case resulting in a design of the
type described in 5.1),

There is, of course, no limitation to only two positions
as used in our example, Any number of positions is poss-
ible to include in the "split-plot" design (see Table IX),
but the more positions the more subjects are required.
The number of subjects per position is minimum two, but in
that case the statistical test is very insensitive (in
practice it seems necessary to have at least 3-4 subjects
per position).

There are several other possible applications of the
"split-plot" design 1in listening tests. Just a few
examples are suggested here:

1) In the design given in Table IX the position variable
could be replaced by sound level (that is, subjects § - V
listen to all loudspeaker x program combinations at one
sound level, subjects W - Z at another sound level).

2) In the same table the program variable and the position
variable could change places. That is, all subjects would
listen to all loudspeakers and in all listening positions
used ("repeated measurement” with regard to loudspeakers
and positions), but different subjects would 1listen to
different programs ("non-repeated measurement" as regards
the program variable).

3) Still another possibility would be that all subjects
listen to all loudspeakers ("repeated measurement"), but
different subjects listen to different programs and in
different positions ("non-repeated measurement" as regards
programs and positions using, say, three subjects per pro-
gram x position combination).

4) If both position and sound level are included in a lis-
tening test, one possibility could be to let all subjects
listen to all 1loudspeaker x program combinations ("re-
peated measurement"” in these two variables), but different
subjects listen at different sound levels and in different
positions ("non-repeated measurement" in those two vari-
ables with, say, at least three subjects per each sound
level x position combination; compare this design with
"repeated measurement™ in all four variables as sketched
in 5.2).

5) If a listening test is performed with subjects of dif-
ferent characteristics (as age, sex, degree of carlier
experience of high-fidelity reproduction etc), and it is
desired to see if these characteristics influence the rat-
ings, a design analogous to that in Table IX may be used.
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Simply replace the position variable in Table IX with, for
instance, sex (subjects S - V males, subjects W - 7
females), or "high-fidelity experience" (subjects S - V
being "hi-fi enthusiasts", subjects W - 2 "non hi-fi ex-
perienced people"}.

The analysis of the examples given in points 1, 2, and 5
above are analogous to the example given in 5.3.1 as
regards ANOVA and F tests (there are some differences as
regards tests for specific compar isons) . Suitable
analysis of the examples in points 3 and 4 may be found in
the texts by Kirk (1968) or Winer (1971).

5.3.3 "Split-plot" design for many loudspeakers

Still another application would be to let all subjects
listen to all loudspeakers ("repeated measurement"), but
different subjects listen to different programs ("non-re-
peated measurement", the design given in Table II would
thus be changed so that there were different subjects for
each of the programs). This might be a possibility if so
many loudspeakers are tested, that it would be unreason-
able to have each subject listen to all loudspeaker x pro-
gram combinations. In this case the summary table from
ANOVA would look like this:

Source of variation SS af MS F

Lo}

Between subjects:
Programs (P)
Subj. within groups

Within subjects:
Loudspeakers (L)

L x P

I. x subj.w. groups
Within cell

Total

TABLE XI. Summary table for ANOVA in "split-plot" design
with "repeated measurements" as regards loudspeakers but
"non-repeated measurements" as regards programs.

In a mixed model the following F tests apply:

MSP / MS

MSL / MSp x subj.w.groups

MSL x P / MS

The L x Subjects within groups interaction may be tested
by dividing the corresponding MS by the "within cell® MS.

subj.w.groups

L x subj.w.groups
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Tests for specific compar isons follow the general
principles described in chapter 4 and in 5.1.3. A test of
the difference between two loudspeakers in average
over the programs and the subjects would have
MS as error term (and the corresponding

L X subj.w.groups
df) divided by the product of the number of programs x the
number of subjects within each group x the number of
replications. A test of the difference between two loud-
speakers for a certain program has the same MS term but
divided by the product of the number of subjects within
each group x the number of replications.

5.3.4 "Split-plot" design versus "repeated measurements"
design

The choice between a design with "repeated measurements”
in all variables {(as described in chapters 2 - 4, 5.1, and
5.2) and a "split-plot"” design with "non-repeated measure-
ments" in one or more variables (5.3) could be discussed
at some length. In general the "repeated measurements”
type of design should be preferred in listening tests due
to its higher sensitivity and less complexity. There may
be cases, however, where a "repeated measurements" design
involves too much time and work for each single subject,
and then a "split-plot" design of some type may be a
solution. The "split-plot" design generally requires more
subjects to attain enough sensitivity in the "non-repeated
measurement" variable(s).
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6 RELIABILITY

There are several ways of checking the reliability of the
rating data from a listening test. The procedures
suggested here utilize easily available information from
the ANOVA, which makes possible estimates of «reliability
both for each subject individually (intra-individual re-
liability) and for all subjects together (inter-individual
reliability).

6.1 Intra-individual reliability

Intra-individual reliability refers to the consistency of
the ratings within each individual. A minimum of two
ratings per each of the loudspeaker x program combinations
(or other stimulus conditions) is necessary in order to
estimate this consistency.

6.1.1 Visual inspection

A first simple check is made simply by visual inspection
of the data matrix for the individual in question. This
was 1illustrated in 2.1 in connection with the individual
data matrix for subject S, see Table I. The three ratings
in each «cell of this matrix vary very 1little among
themselves, which indicates a high reliability. This can
also be seen in the data matrix for the same subject when
the sound level was included as a variable, see Table VI.
Other individual data matrices can be seen within Table II
for subjects T, U, and V whose data also display a good
reliability (however, not as high as for subject S).

6.1.2 Statistical significance

If ANOVA and F tests are performed, a significant F test
for the loudspeakers may be taken as an indication of
satisfactory reliability in the ratings concerning loud-
speakers. The reason is that there is a very 1low prob-
ability of getting a significant F test solely by chance
(see 3.1 and 7.1) - as, for instance, if the subject's
ratings were made on random basis.

On the other hand a non-significant F test does not in
itself imply irreliability. It may simply mean that the
loudspeakers are about equally good, and the subject's
ratings may be quite reliable/consistent as indicated by

the MSwithin cell described below.
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6.1.3 Variance "within cells"

The "within cell" MS obtained in the ANOVA on individual
data reflects the variance of the ratings within all cells
of the respective data matrix, that is, how much the sub-
ject varies in his ratings of the same stimulus at differ-
ent occasions in the test - in other words, his "error
variance" {see 3.1}.

The "within cell” MS may therefore be taken as an indi-
cation of intra-individual reliability. The lower this
value is, the better the reliability. For the data of
subject S in Table I it was 0.28 as seen in Table IV, and
for the same subject's data in Table VI it was 0.51 as
seen in Table VII, {cell = loudspeaker x program combina-
tion in Table I, loudspeaker x program X sound level com-
bination in Table VI). For subjects T, U, and V (in Table
I1) the "within cell"™ MS was 0.85, 0.65 and 1.25
respectively.

Where an acceptable upper 1limit for the "within cell"
variance should be set may be discussed at some length.
Considering the characteristics of the 10 - 0 "true-to-
nature" scale and using information from other subjects
and from other listening tests it is suggested that 1.50
may be set as an approximate upper limit. However, this
should not be taken in an absolute sense and has to be
considered in connection with other possibilities de-
scribed in following sections.

6.1.4 Reliability of mean ratings

The procedure described here is taken from Winer (1962 p.
124, or 1971, p. 283) but applied to data within indi-
vidual here (see also 6.2.3). It provides an estimate of
the reliability of the mean of the ratings made for each
of the stimuli (for instance, each loudspeaker X program
combination).

For individual data in a matrix like Table I (subject S)
and the corresponding ANOVA in Table IV this reliability
index (£w’ w for within) is computed as follows:

MSwithin cell

+ ssLxP) / (de + dfP + dexp)

r =1 -
—-w (SSL + 5§

P
Applied to the data in Table IV we obtain:

_ 0,28

_r-w - (l48.93+5.43+35.23) / (3+4+12) = 0.97

An interpretation of this reliability (adapted from Winer)
would be that, if the listening test was repeated with
this subject under the same conditions (including the sub-
ject's characteristics), the correlation between the mean
ratings for each loudspeaker x program combination in the
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two listening tests would be approximately 0.97. For this
subject, then, the correlation would be almost per fectly
positive, For subjects T, U, and V L is 0.89, 0.93 and

0.79, respectively.

1f more variables are included in the test, there will be
more terms included in the denominator of formula (8}.
For example, to compute r  for the data in Table VI the

denominator will include SS and df for seven terms (see
the corresponding ANOVA 1in Table VII): loudspeakers,
sound levels, programs, and all possible interactions be-
tween these variables. For these data the reliability
index will be:

= 1- 0.51
Lw © 1 (262.83+7.01+10,08+1.49+45,12+8.95+14.38)/(3+1+4+3+12+4+12)

= 0.94

It is obvious that the lower the "within cell" MS (the
"error variance") is relative to the variation associated
with the variables in the denominator, the higher r  gets.

If there is no "error variance" at all (MS 0)

within cell”

£w will be 1.00. On the other hand, if Mswithin cell is
as big as the expression in the denominator, will be

zero. {If X, happens to be negative,it is set =0.)

Where to set an acceptable lower limit for Ly in listening
tests is, of course, subject to discussion. On the basis
of data from several listening tests it is suggested that

0.50 may be used as an approximate lower limit.

However, L  cannot be the only basis for a decision about
acceptable reliability or not. In fact r can sometimes
be misleading. Suppose that in a listening test the loud-
speakers in question are about equally good and thus get
about the same ratings on the 10 - 0 scale, This means
that the variation associated with the 1loudspeakers ({and

possibly also with the programs and the interaction loud-
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speakers x programs) will be low, and the denominator in
formula (8) will be small. And so, even though the

MSwithin cell

happens to be low, r, may be misleadingly
low for the purpose of judging the subject's reliability.

It is obvious that L, is dependent on the specific context

of loudspeakers and programs in the test.

Thus r should be considered together with MS_.., .. a1}

If L is >.70 and MS is <1.50, the reliability

within cell

may be considered as good. 1If L, is medium high (say,

.40 - ,60) but MS is €1.50, the reliability may

within cell

still be satisfactory. However, if is 1low and

MS 1 is >1.50, the reliability 1is probably not

within cel
satisfactory. In such cases the data should be scruti-
nized to find the possible reason(s) for the 1low re-

liability.

The meaning of r, can be further analysed by computing

another index as described in the following section.

06.1.5 Proportion of variance accounted for

Still another way of judging the reliability would be to
consider how much of the variance in the subject's data is
accounted for by the different sources of variation in the
listening test. This 1is in itself interesting infor-
mation, regardless of its use for estimations of re-
liability.

Ta compute the proportion of variance accounted for

(designated by QF) by different sources in an individual
data matrix as Table I the following formulas are used:

(9) W2 = SSy, - (dfp x M5 .17)
=L 55 + MS
total w.cell
(10) u% _ SSP B (dfP X Msw.cell)
- SS¢ota1 * M3y, cell
(11) 2 _ SSpyp = ldfp.p X M5, cerr)
gkxP SS + MS

total w.cell
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The values to enter in these formulas are easily found in
the corresponding ANOVA summary table, in this case Table
IV. The proportion of variance accounted for by the loud-
speaker variable is thus:

2 _ 148.93 - (3 x 0.28)

W, = —7200.92 + 0.28 = 0.74
For the program variable:

2 _ 5.43 - (4 x 0.28) _
W = —300.92 + 0.28 = 0.02

Finally for the interaction loudspeakers x programs:

UF _ _35.23 - (12 x 0.28)
=LxP 200.92 + 0.28

= 0,16

Thus 74% of the variance in the data of subject S is
accounted for by differences between the loudspeakers, 2%
by differences between the programs and 16% by the inter-
action loudspeakers X programs. The remaining 8% rep-
resents the "error variance" estimated by MS

within cell

If more variables are included in the listening test, the
variance accounted for by these variables and all interac-
tions can be estimated in analogy with formulas (9} -
(11). For example, if the analogous computations are
performed with regard to the data in Table VI, there will
be seven computations, one for each of the seven first
terms in Table VII in which the relevant values are found.
In that case the variance accounted for by the differences
between loudspeakers was about 67% and in total the seven
sources accounted for about 84%, leaving 16% due to "error
variance".

The rationale behind(J_J2 and more computational formulas
may be found in Hays (1973), Kirk (1968) and Vaughan &
Corballis (1969).

The meaning of the L, index in 6.1.4 may be further clari-

fied by computing the(_g2 indices described here. For sub-
ject S r, was as high as 0,97 due to his 1low ‘"error

variance" (numerator in formula 8) relative to the
variance associated with differences between loudspeakers,
differences between programs, and interaction loudspeakers
x programs (denominator in formula 8). Among the 1last-
mentioned sources it was now clarified that the variance
associated with differences between 1loudspeakers was by
far the biggest (74%, see above). 1In another example,
however, it could happen that it is the differences
between programs or the interaction between loudspeakers
and programs which account for most of the "true"
variance. r, in itself does not make any distinction

between these different alternatives (or still other
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alternatives). Therefore it may be elucidating to sup-
plement Ew'with the@2 indices described here. (For in-

stance, if the proportion of variance accounted for by
differences between programs is high, it may be an indi-
cation that the reliability of the ratings rather refer to
differences between the programs than to differences
between the loudspeakers.}

The amount of variance accounted for by different sources
is apparently dependent on the context of stimuli. TIf
there are obvious differences between loudspeakers {as in
our example), the variance accounted for by differences
between loudspeakers may be high. On the other hand, if
the loudspeakers are about equally good, this variance may
become quite low. The same line of reasoning applies,
with due modifications, to programs, and to interaction
between loudspeakers and programs. Therefore it is not
very useful to decide upon acceptable limits for the

respective proportions of variance. The gf indices have

to be considered in connection with Ew and Mswithin cell

as described in 6.1.4.

6.1.6 Conclusions regarding intra-individual reliability

Several ways of estimating the intra-individual re-
liability exist. The necessary data are found in the cor-
responding ANOVA summary table, and the computations are
easily done. It seems that a combined consideration of
all procedures described in 6.1.1 - 6.1.5 is to be rec-
ommended. In general these procedures should all lead to
similar conclusions regarding the reliability of the sub-
ject's ratings.

If a subject's reliability appears to be unsatisfactorily
low, a possible way to increase his reliability would be
to give him more practice and/or to 1let him do more
ratings per each <case (for instance, four ratings per
loudspeaker x program combination instead of three as 1il-
lustrated here). If he still shows unsatisfactory re-
liability in his ratings, his data may be discarded.
However, if the tendencies in his data seem to be in line
with those from other, reliable subjects, it probably does
not matter whether his data are included or not. Of
course, the more subjects there are, the less influence an
irreliable subject will have on the results.

6.2 Inter-individual reliability

Inter-individual reliability refers to the agreement be-
tween the ratings from different subjects.

(With regard to the "true-to-nature" scale there might
sometimes be some problems concerning the inter-individual
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reliability. The reason is that the "true-to-nature"
scale is probably a multidimensional one, that 1is, a
composite of several separate perceptual dimensions such
as "Distinctness", "Brightness", "Fullness" etc. It 1is
possible that different subjects give different weights to
different perceptual dimensions, when they judge the
"true-to-nature" character of the reproductions in ques-
tion. Consequently it may happen that, although the
intra-individual reliability is high for each single sub-
ject, the inter-individual reliability 1is not as high,
because different subjects use different judgment prin-
ciples. However, if both intra- and inter-individual re-
liabilities ¢ve high, this indicates that the subjects are
consistent within themselves and also agree between them-
selves.

This discussion does not apply, of course, to rating
scales of unidimensional character.)

6.2.1 Visual inspection

A rough estimate of inter-individual reliability is gained
by simple inspection and comparison of individual data
matrices. It is evident, for example, that there is in
general a good agreement between the ratings of subjects
S, T, U, and V in the group data matrix shown in Table II.

6.2,2 Statistical significance

A significant F test for loudspeakers may indicate satis-
factory reliability for the same reason as discussed in
6.1.2. On the other hand a non-significant F test does
not in itself imply irreliability, see 6.1.2.

6.2.3 Reliability of mean ratings

This alternative is adapted from the discussion in Winer
(1962 p. 124 or 1971 p. 283)., For the group of four
subjects given in Table II and with corresponding ANOVA in
Table V a reliability index (r_, b for between) for the

agreement between subjects is computed as follows:

+55 5SS )/(dexS+dfoS+dexPxS+df

(12) ¢, = 1- (SSLXS PXS+SSLXPXS+ w.cell )

w.cell

b (SSL+SSP+SSLKP)/(de+dfP+dexP)

{Note: SSS is not included in the numerator, since it

only reflects differences between subjects with regard to
their "mean position" on the 10 - 0 scale, see comments in
3.2.)
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As applied to the data in Table V, this reliability index
is:

(17.34+42,86+45.98+121,33) /(9+12+36+160)

(465.75+11.94+47.36)/ (3+4+12) = 0.96

Ly <

Apparently there is a high agreement between the four sub-
jects. The result may be interpreted as follows: If the
listening test was repeated with another random sample of
four subjects from the same population (which was a so-
ciety for hi-fi enthusiasts), the correlation between the
mean ratings for each loudspeaker x program combination in
the two tests would be approximately 0.96.

Due to the above considerations concerning the "composite"
character of the "true-to-nature" scale it is 1less mean-
ingful to set up a lower limit for acceptable inter-indi-
vidual reliability., 1If Iy is as high as here, there is no

problem. If Ly turns out to be less than, say, 0.50, it

may be wise to scrutinize the data to see the reason(s),
and/or to increase the number of subjects. It may also
happen that Ly becomes low for the same reasons that may

lead to a misleadingly low L {as discussed in 6.1.4)}.

6.2.4 Proportion of variance accounted for

For the fixed model the proportion of variance accounted
for by the different loudspeakers, different programs and
the loudspeaker x program interaction can be estimated by
using formulas (9) - (1l1), respectively. The values to
put into the formulas are found in the corresponding ANOVA
summary table {in this case thus Table V). The proportion
of variance accounted for by different subjects and by in-
teractions involving subjects can be estimated by formulas
analogous to those in formulas {(9) - (11) - note how for-
mulas (9) - (11) are built up and use the same principles
as regards the subjects and the interactions involving
subjects. Using data from Table V and assuming the fixed
model, computations show that the differences between
loudspeakers account for 54% of the variance, the differ-
ences between programs for only 1%, the interaction 1loud-
speakers x programs for 4.4%, while the differences be-
tween subjects and the interactions involving subjects
together account for 19.4%.

For the mixed model (the subjects are randomly sampled
from a population) the corresponding computations are
somewhat more complex. Formulas and procedures may be
found in Vaughan & Corballis (1969, their Table 2, model
aBC, where a corresponds to subjects, B to loudspeakers
and C to programs). Using these formulas on the data in
Table V (assuming mixed model) approximately the same re-
sults (percentages) are obtained as for the fixed model
above. (Although such an agreement cannot be generally
expected to occur, the simpler formulas for the fixed
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model may in many cases be enough to get at least a crude
estimation of the corresponding results Ffor the mixed
model.)

6.2.5 Conclusions regarding inter-individual reliability

Due to the "composite" character of the "true-to-nature"
scale and the possibility that different subjects use dif-
ferent judgment principles, it is less meaningful to de-
cide upon acceptable lower limits for inter-individual re-
liability than for intra-individual reliability. However,
the following considerations seem relevant:

1) 1f Iy is high, this points to a good agreement between
the subjects in their ratings.

2) If Iy is only medium high or even lower, this should be

a signal to compare the data from different individuals to
see the possible reason(s). If there are obvious differ-
ences between different subjects in their ratings, and if
these subjects each show a satisfactory intra~individual
reliability, this may indicate different judgment prin-
ciples for different subjects. To clarify the situation
it is probably wise to increase the number of subjects,
and/or to supplement the "true-to-nature" ratings with
ratings in separate, unidimensional scales of relevance
for the test.

3} However, if both inter- and intra-individual re-
liabilities seem to be unsatisfactory (that is, the sub-
jects do not agree between themselves, nor are they
consistent within themselves), this may indicate much
"error" in the data. Steps should be taken to increase
reliability by adding more ratings and/or more subjects
(possibly discarding data from irreliable subjects).

With a truly unidimensional rating scale the situation is
simpler, since the considerations under point 2 above
become mainly irrelevant.

If estimations of the proportion of variance accounted for
by different sources have been made (see 6.2.4), these
data may also be useful for judging the inter-individual
reliability. The more variance accounted for by loud-
speakers, and/or programs, and/or loudspeaker x program
interaction, and the less variance attributable to differ-
ences between subjects and/or interactions involving sub-
jects, the better the inter-individual reliability. The
relative amount of variance accounted for by differences
between loudspeakers, differences between programs, and
the interaction between loudspeakers and programs is, of
course, interesting information in itself and may clarify
the meaning of the L, value in the same way as discussed

for r in 6.1.5.
—w
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7 SOME CRITICAL ISSUES IN SIGNIFICANCE TESTING

The use of significance tests always involves certain
error risks, commonly known as type I and type II errors.
Further all significance tests are based upon a series of
assumptions.

7.1 Error risks, significance level, "power"

As seen in the earlier examples, the result of a sig-
nificance test is stated in probability terms. Fotr
instance, if an F test for the loudspeaker variable is
significant at .01 level ({(also denoted 1% level), this
means that the probability of getting the observed differ-
ences between the loudspeakers by chance alone is less
than .01. Since this probability is very low, one gener-—
ally concludes that there are "real" or "true" differences
between the loudspeakers. The risk that this conclusion
is wrong is at most .01 and defines the so-called "type 1
error" (the risk of concluding that the loudspeakers are
different although they are not}.

The risk of a "type I error" is regulated by the choice of
significance level., The significance levels mostly used
in behavioral and social science are .05 or .01 level.
These are conventions, however, and ideally the choice of
significance level should be considered in connection with
the risk of making a "type II error". The "type 1T error"
is the risk of concluding that there are no differences
between loudspeakers, although there are in fact "“real"
differences between them. Obviously it is important in
listening tests to avoid a "type II error". Therefore the
statistical test should have a dood 'power" or "sensi-
tivity" to detect really existing differences. The
"oower" of a statistical test is formally defined as 1-
the probability for type II error.

Unfortunately an exact calculation of the probability of
"type II error", and thus also of "power", is not as easy
as for "type I error". In dgeneral the following rules
apply. The lower the "type I error" is made, the higher
the "type II error" will be (in other words, the lower the
significance level is set, the bigger is the risk of not
detecting "real" differences). Conversely, the smaller
"error variance" there is in the data, and the bigger
"real" differences there are between loudspeakers, the
lower the “"type II error" will be (= the higher "power"
the statistical test will have). Further the "power" of a
one-tailed test (= test for difference in a certain
direction, for example, if one loudspeaker is better than
another, see 4.1) is higher than for a two-tailed test (=
test for difference regardless of direction).

For a given significance level (= probability of "type I
error"} the "power" should be as high as possible. The
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investigator can increase the "power" by decreasing the
error variance, which is achieved by increasing the number
of replications (the number of ratings under the same con-
ditions, for instance, the number of ratings each subject
makes per each loudspeaker x program combination) and/or
the number of subjects. Some guidelines for achieving
satisfactory "power" are given below.

7.2 Computing "power",number of ratings, number of
subjects

There are various methods for computing the "power" of
statistical tests, based on certain assumptions (Kirk,
1968; Hays, 1973). One of these methods gives a value
for the minimum "power®”, if the largest difference among
the actual means equals the standard deviation of the
"errors" (= the square root of the error variance) times a
multiplicative factor to be decided by the investigator
(Kirk, 1968, p. 109). For instance, it is possible to
compute the minimum "power", if the 1largest difference
occurring among the mean ratings for a number of loud-
speakers (such as the means in the bottom margin of Table
II) would equal the size of the standard deviation of
"errors" (multiplicative factor = 1.,00), or would be equal
to twice this standard deviation (multiplicative factor =
2,00), etc. An advantage with this method is that it does
not require a direct numerical estimate of the error
standard deviation but "only" an expression of differences
among the means in units of the error standard deviation,
If the computations would show that the minimum "power"
would be unacceptably low, it is also possible to compute
how much the number of replications and/or subjects should
be increased to attain acceptable "power".

By using this method it is thus possible to compute 1in
advance (before the listening test is started) how many
replications and/or subjects are necessary to achieve sat-
isfactory "power". Adapting the method to apply to group
data (as described in 2.2) and to the use of a fixed or a
mixed model in the ANOVA on dgroup data (see 3.2), the
author made extensive computations concerning the "power"
of the significance test on loudspeakers in ‘listening
tests with varying numbers of loudspeakers, programs, sub-
jects, and replications. The computations require too
much space to be shown here. Only the main conclusions
for practical use are given in the following.

Computations have been made for the cases (a) that the
largest occurring difference between the loudspeaker means
is equal to the error standard deviation (multiplicative
factor = 1.0), and (b) that the largest occurring differ-
ence between the loudspeaker means is equal to twice the
error standard deviation (multiplicative factor = 2.0).
TSatisfactory power" was defined as "power" > .90, and the
significance level was set to .05 or .0l.
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For case (a) above, the computations show that it 1is
necessary to have at least eight subjects, doing at least
two ratings per each loudspeaker x program combination to
attain the desired "power". This case represents a rather
"hard" criterion, that is, a largest occuring difference
between the loudspeaker means not bigger than the error
standard deviation should result in a significant F test
for the loudspeakers.

For case (b), with the 1less severe criterion that a
largest occuring difference between the loudspeaker means
corresponding to twice the size of the error standard
deviation should result in a significant F test, it is
necessary to have at least four subjects, doing at least
two ratings per each loudspeaker x program combination.

The above conclusions hold for listening tests with three
to ten loudspeakers reproducing three to six programs.
This probably covers the range of loudspeakers and
programs used in most listening tests. If more than ten
loudspeakers are used, it may be preferable to increase
the number of subjects. The conclusions apply to both the
fixed and the mixed model. If for some reason the sub-
jects can do only one rating per each loudspeaker X
program combination, it is suggested that the number of
subjects in the above recommendations is doubled.

The investigator must decide for himself which of cases
(a) or (b) above 1is most relevant with regard to his
purposes. Of course, he can choose a criterion in between
those two by simple interpolation (for instance, setting
the multiplicative factor = 1.5 and using at least six
subjects doing at least two ratings per loudspeaker X
program combination). In the author's opinion, however, a
less severe criterion than that represented by case (b)
should not be permitted. Thus four subjects doing at
least two ratings per loudspeaker x program combination
should be considered as an absolute minimum.

The above recommendations are based on statistical con-
siderations. Of course there may be situations in which
other (non-statistical) factors may be important for de-
ciding the number of subjects etc. With continued
experience of listening tests an investigator probably
develops a certain "intuitive feeling" for which number of
loudspeakers, programs, subjects etc are needed to get the
necessary precision and relevance in his test.

Since the above method makes use of the error standard
deviation as a kind of unit for specifying "true" differ-
ences between loudspeakers, it is therefore desirable that

the error variance is as low as possible - in other words
that the subjects have a satisfactory reliability in their
ratings, The recommendations concerning number of sub-

jects and ratings above may therefore be supplemented by
the recommendations about satisfactory reliability as dis-
cussed in chapter 6.
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7.3 Assumptions underlying significance tests

Underlying ANOVA and accompanying statistical tests there
are certain general assumptions as well as certain speci-
fic assumptions Ffor various designs, These assumptions
are listed in most texts on statistics and design (Kirk,
1968, 1972; Hays, 1973; Winer 1971). The general
assumptions refer to such things as normal distribution
and independence of "errors", "homogeneous error
variances" and the like, while assumptions specific for
various designs may deal with, for instance, the symmetry
of variance-covariance matrices in designs with "repeated
measurements".

If the assumptions are violated, this will affect the sig-
nificance level and the "power" of the statistical tests,
that 1is, the probabilities assoclated with the sig-
nificance level and the "power" will not be exact but more
or less approximate. It has been shown mathematically and
by means of simulation experiments (see the references
mentioned above) that violation of certain assumptions has
very small effects on the significance level, while other
assumptions may be more critical, Thus violations of the
"normal distribution" assumption and of the "homogeneous
error variances" assumption in general have very little
effects as regards the significance 1level (for the
last-mentioned assumption, however, it is important that
there is the same number of ratings per each loudspeaker x
program combination, as in Tables I or II1.) The effects
on "power" are denerally harder to estimate. There are
various ways of testing the validity of the assumptions
and possibly transforming the data to better fit the
assumptions. From a practical point of view, however, it
is often doubtful whether these procedures are worthwhile.

With regard to listening tests two assumptions seem
especially important:

1) The assumption concerning independent "errors" is gen-
erally very important. If it {s violated, the probability
statements related to the significance level may be very
much in error. The detailed meaning of this assumption
requires tno much space to be explicated here. Suffice it
to say that this assumption can be considered as fulfilled
in listening tests if the presentation order of loudspeak-
er x program combinations is randomized. The random-
ization should be different for different subjects. For
instance, 1in our example using four loudspeakers and five
programs the order of the resulting twenty loudspeaker x
program combinations should be randomized differently for
each subject. Since there are three ratings per combina-
tion, there are 1in fact sixty presentations reguiring
three different randomizations of the twenty combinations
for each subject. Of course, the randomization can be
made with reference to all sixty presentations together
requiring only one (but more extensive) randomization per
subject.
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Generally this assumption also implies that the ratings of
each subject is independent of each other subject's
ratings., It is thus necessary to somehow control that the
subjects do not communicate or otherwise influence each
other in connection with the test (which sometimes can be
difficult to control). A special problem is that one
sometimes have two (or even more) subjects simultaneously
listening in the test. Although the order of the loud-

speaker X program combinations in itself may be
randomized, it will of course be the same randomization
for these subjects. In such a case it may be doubtful

whether the assumption of independent etrors is quite
fulfilled, and a certain caution in the interpretation of
the results is recommended.

2) When doing ANOVA on group data(as illustrated in Tables
V and VIII) and using the mixed model for the analysis
(that 1is, the subjects are randomly sampled from a popu-
lation), there is an intricate assumption about equality
and symmetry of certain variance-covariance matrices. If
this assumption 1s not met, the actual significance level
may be somewhat higher than the nominal level (it will be
too "easy" to get significant results). There are certain
ways of circumventing this difficulty, none of which Iis
quite satisfactory (one simple way is to use a lower sig-
nificance level than planned). Moreover, since the val-
idity of the assumption 1is often hard to evaluate, the
situation is problematic and considerations of non-stat-
istical character may be helpful (see below; note also
that this assumption is not required if a fixed model is
used) .

Since it is impossible to be gquite certain that all
assumptions are strictly fulfilled in a set of data, the
probability statements associated with significance tests
should be regarded as approximations. 1In practice the
conclusions from statistical tests always have to be con-
sidered in combination with other information of relevance
for the iInvestigated problem, for instance, 1f they adree
with earlier results, if they are reasonable with regard
to what is known about the loudspeakers' physical charac-
teristics, and the like.

A brief comment may finally be made to the question
concerning appropriate statistics for different types of
scales. In the introduction it was assumed that the 10 -
§ "true-to-nature" rating scale represents an interval
scale. If this assumption is not fulfilled, there may be
a discussion about the appropriateness of the statistical
procedures described in chapters 1 - 6. 1In fact the ques-
tion about using ANOVA and related procedures for data on

"lower" types of scales (for instance, ordinal scales) is
a very much debated and unsettled problem, A review of
this discussion may be found in Kirk (1972). From a

practical point of view there are, however, no satisfac-
tory alternative statistical procedures for the type of
designs discussed in this report, so there is in fact no
choice.
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8 COMPUTATIONS, COMPUTER PROGRAMS, TABLES

The computations involved in ANOVA are convenliently per-
formed by aid of a computer. There are many available
computer programs for ANOVA, for instance, within
"Biomedical Computer Programs" (BMD), "Statistical Package
for the Social Sciences" (SPSS), "IBM Scientific Sub-
routine Package" (SSP), "International Mathematical &
Statistical Libraries" (IMSL), and others. New programs
appear now and then. Ask for a convenient program at your
nearest program library.

If a computer is not easily available, the computations
may be performed by means of electronic calculators
{preferably equipped with memory functions). Compu-
tational schemas for ANOVA in various designs appear in
many textbooks on statistics and experimental design, for
instance, in Kirk (1968), Hays (1973), and Winer (1971}.
A lot of computational schemas for ANOVA and many other
statistical areas appear in "“Computational Handbook of
Statistics" by Bruning & Kintz (1977). This book also
includes 1lists of short computer programs for various
applications of ANOVA (written in FORTRAN 1V}, which can
be used if no other computer program is available.

Unfortunately there are certain differences between dif-
ferent programs and different books with regard to the
terminology. Several examples in the above-mentioned
books, and the examples used 1in this paper, provide
possibilities to check that the correct program (or compu-
tational schema) is used. In the book by Bruning & Kintz
(1977), there is also a table over various designs and the
associated terminology as used in many textbooks on stat-
istics and design. The use of a computer program
facilitates the computations for ANOVA. The computations
involved in tests for specific comparisons (chapter 4) and
in estimation of reliabilities (chapter 6) are easier to
do with your own calculator. It should be noted that the
results of computations may be slightly different from
different computer programs, depending on which precision
is used in the respective programs or computers. The
computations in this paper for ANOVA and for formulas (1)
- (12) were made mostly using two decimals.

Tables for the distributions of F, t, and g test
statistics are found in most textbooks on statistics and
design, for instance, in Kirk (1968), Winer (1971), and
Bruning & Kintz (1977).
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9 PRESENTATION OF RESULTS

Two cases will be distinguished:
l) Only descriptive statistics are used (9.1)

2) The statistical data treatment involves ANOVA and
accompanying statistical tests (9.2)

9.1 Only descriptive statistics

If the data treatment is limited to descriptive statistics
as described in chapter 2, the main results can be
presented in a condensed group data matrix 1ike that 1in
Table 1II1. The corresponding data can also be displayed
in graphical form, for instance, simply like this:

Rating Rating
10 - 10 1
9 Program 1 9 ¢ Average over
all programs
8 - 8
7 + 7 4
6 1 6 +
5 t 5 J
4 1 4
3 1 3
2 + 2 +
1 ¢ 1
0 - ]
A B C D A B C D
Loudspeaker Loudspeaker

FIGURE 2. Example of graphical display of group means for
loudspeakers, data from Table II. (Only means at program
l and in average over all five programs are included here.
Of course, more sophisticated figures can be made.)

However, it is also strongly recommended to present a
complete group data matrix of the type shown in Table II.
This allows the reader to look at the dispersions around
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the means, to get an impression of the reliability of the
data, and to make further computations and analyses on the
data, if he wants to do so. The investigator's own con-
clusions from his data analysis should, of course, be
clearly stated.

9.2 Data treatment involving ANOVA

Group data matrices and graphs may be presented as
described under 9.1 above. (Since information about the
dispersions of the ratings will appear in the results from
ANOVA, the contents of the group data matrix of type Table
IT may be reduced by omitting the replicated ratings of
each single subject and only including the individual
means and the group mean within each loudspeaker x program
combination. For example, each loudspeaker x program
combination in Table II would thus only contain the values
denoted MS, MT, MU' MV (individual means}, and Mg (group

mean). The means for the 1loudspeakers and for the
programs in the margins are, of course, retained.) From
the ANOVA a summary table like that in Table V should be
presented. It should be clearly stated whether a fixed
model or a mixed model is used, and how the F values are
computed. The conclusions from the ANOVA and F tests
should be presented and related to the data in the group
matrix.

A significant result for the loudspeaker variable may be
further investigated by means of tests for specific com-
parisons., If so, the test(s) used should be stated, as
well as the conclusions from them.

If significant interactions occur, they should be
interpreted by means of the group data matrix and possibly
by tests for specific comparisons. It 1is especially

important to note the meaning of significant loudspeakers
X programs interaction, loudspeakers x subjects interac-
tion, and loudspeakers x programs x subjects interaction,
since such interactions may present highly important
information concerning the loudspeakers in addition to the
result from the F test in the loudspeaker variable (either
this is significant or not).

If the listening test includes more variables than 1loud-
speakers and programs, and/or if a "split-plot" type
design is used, the above recommendations still apply, but
the group data matrix and the ANOVA summary table will
take somewhat other forms as described in chapter 5.

Data on intra-individual and inter-individual reliability
should be given "using one or more of the possibllities
described in chapter 6.
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10 CONCLUDING COMMENTS, ACKNOWLEDGEMENTS

The procedures described in this paper may provide aids
for the investigator to understand the meaning of the data
in his listening test. Although the paper is rather long,
there are in fact several simplifications in the text, and
alternative methods could be proposed at several points.
The paper 1is designed for the statistically not S0
well-trained investigator. If there is an expert in stat-
istics available he should be consulted, preferably
already in the planning of the listening test.

Throughout this paper a rating scale of the
"true-to-nature" type has been assumed. However, most of
the statistics would apply equally well to other types of
rating scales which may be used in listening tests,

Finally it should be emphasized that the statistical
treatment should be an aid for the investigator to under-
stand the empirical meaning of his data. Statistics for
its own sake 1is uninteresting. The investigator should
make full use of his expert knowledge concerning loud-
speakers and related things and not let himself get lost

in a wealth of statistical tests. As said earlier, the
results are sometimes so obvious from visual inspection of
data that a more advanced data treatment is not

worthwhile., In other situations, however, a judicious use
of statistical methods may clarify a complex situation and
provide important information for the future work. It is
no easy thing to attain the proper combination of
empirical investigator and statistician in one person.

The author wants to express his gratitude to professor
Paul Seeger for valuable discussions in many statistical
guestions, to Anna-Greta Seger and Lennart Persson for all
work with typing and editing this paper, and to Bijdrn
Hagerman and Bjbrn Lindstr8m for check-reading the
manuscript.
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Means for

Program A f B | C ! D programs
| i 1
1 1 1
1 767 | 555 | 675 | 334
M=6.7 f 5.0 | 6.0 t 3.3 5.3
------------------ R e e BT PR
2 667 | 334 | 557 | 334
6.3 | 3.3 | 5.7 | 3.3 4.7
------------------ el el B
3 788 | 222 | 777 | 333
7.7 ] 2.0 I 7.0 | 3.0 4.9
—————————————————— R Bl GRS BRI
4 7868 | 333 | 878 | 333
7.7 | 3.0 I 7.7 I 3.0 5.3
—————————————————— el il [T P
5 676 | 554 | 666 | 56565
6.3 f 4.7 ] 6.0 J 5.0 5.5
L 1 H
I Ll 1
Means for | | |
loud- 6.9 | 3.6 I 6.5 | 3.5
speakers I l l
TABLE I. Example of individual data matrix
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Example of group data matrix for subjects
U,

T,

TABLE IT.
denoted S,



S~ or g

Means for

loudspeakers| 6.8

Loudspeaker

Means for

A B c D preograms
1 6.5 4.8 5.9 4.2 5.3
2 7.2 3.4 )60 ]33] s.0
1|68 | 3.3 6.1 28] a7
s [ 7.3 [ 3768 ]33] 5.3
5| 6.4 3.9 5.4 a5 5.1
3.8 6.0 3.6

TABLE III. Condensed group data matrix.

Source of Sum of IDegrees ofjMean | i
variation squares | freedom | square f |
. (55} ! (df) ! (MS) ! E ! P
Loudspeakers (L) {148.93 i 3 i49.64 i177.29 i<.01
Programs (P) 5.43 : 4 : 1.36 I 4.86 :< 01
L x P 35,23 : 12 : 2.94 } 10.50 =<.01
Within cell 11.33 ; 40 i 0.28 ! ;
Total 200.92 i 59 i i i
TABLE 1IV. Example of summary table for ANOVA on individ-

ual data matrix.



Source of variation| S§ | af | Ms | F ' p
l I 1 ——
Loudspeakers (L) 465,75 | 3 ]155.25 | 80.44 [<.01
Programs (P) 11.94 { 4 { 2,99 } 0.84 : -
Subjects (S) 105,25 : 3 : 35.08 { 46.16 :( 01
L x P 47.36 : 12 : 3.95 : 3.09 ;<.01
L xS 17.34 ; 9 l 1.93 , 2.54 ==.01
P x 8 42.86 } 12 I 3.57 : 4.70 :(.01
L x P x5S 45,98 } 36 ’ 1.28 { 1,68 =>.01
Within cell 121,33 i160 ; 0.76 ; i
Total 857.81 i239 i i |

TABLE V. ©Example of summary table for ANOVA on group data
matrix (mixed model, case 2 below).
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Example of individual data matrix for listenin
loudspeakers, pro-

test with three independent variables:

TABLE VI.

and sound 1levels.

grams,



Source of variation| 88 df MS F p
Loudspeakers (L) 262.43 3 87.48 171.53 <.01
Sound level (SL) 7.01 1 7.01 13.75 <.01
Programs (P) 10.08 4 2,52 4,94 <.01
L x SL 1.49 3 0.50 <1.0 -
L x P 45.12 12 3.76 7.37 <.01
SL x P 8.95 4 2.24 4,39 <.01
L x SL x P 14.38 12 1.20 2.35 >.01
Within cell 40.67 80 0.51
Total 390.13 119

TABLE VII. Summary table for ANOVA on data in Table VI,

Source of variation Ss af MS F p
Loudspeakers (L) 3
Sound level (SL) 1
Programs (P) 4
Subjects (S) 3
L x SL 3
L xP i2
L x5 9
SL x P 4
SL x S 3
P xS 12
L x SL x P 12
L x SL x 5 9
L xP xS 36
SL x P x § 12
L x SL x P x S 36
Within cell 320
Total 479

Table VIII.
data in 1i

Schema for summary table

stening

in ANOVA on group

test including loudspeakers, programs

and sound levels as independent variables.



Loudspeaker

A | B | C | D
I t I
Program | Program | Program | Program

Pogition 1 2345123451123 45|1234H+5
Subject -+ 1 }
S I I |
1 T I | I
U I I I
v I | I

---------------------- |-====-=== |- [ = -
I I |
W I I |
2 X I I |
Y | I |
Z | I |
} I ;
| ! t
| | I

TABLE IX. Group data matrix for a "split-plot" design in
a listening test with 1loudspeakers, programs, and pos-
itions as independent variables,

Source of variation Ss df M5 F p
Between subjects: 7
Positions (PO) 1
Subj. within groups 6
Within subjects: 472
Loudspeakers (L) 3
L x PO 3
L x subj.w. groups 18
Programs (P) 4
P x PO 4
P x subj.w. groups 24
L x P 12
PO x L x P 12
L x P x subj.w. groups 72
Within cell 320
Total 479

TABLE X. Summary table for ANOVA of the 1"split-plot"
design in Table IX.




Source of variation sSS df MS

=
(e)

Between subjects:
Programs (P)
Subj. within groups

Within subjects:
Loudspeakers (L)

L x P

L x subj.w. dgroups
Within cell

Total

TABLE XI. Summary table for ANOVA in "split-plot" design
with "repeated measurements" as regards loudspeakers but
"non-repeated measurements" as regards programs.



10 - The number 10 denotes a

reproduction which is per-

9 + Excellent fectly true-to-nature.

8

7 + Good

6

5 1+ Fair

4 A

3 1+ Poor

2

_ The number 0 denotes a repro-

1 1+ Bad duction so bad that it has practi-
cally no similarity at all with

0+ the original performance.

FIGURE 1 "True-—-to-nature" rating scale.

Rating Rating
10 - 10
9 1 Program 1 9 1 Average over
all programs
8 + 8 ¢
7 ' 7
6 1 ' 6
5 ¢ 5 1
4 1 ' 4 4
3 4 3
2 ¢ 2 1
1 4 1 +
0 : 0
A B C D A B C D
Loudspeakertcr Loudspeaker

FIGURE 2. Example of graphical display of group means for
loudspeakers, data from Table II. (Only means at program
1 and in average over all five programs are included here.
Of course, more sophisticated figqures can be made.)
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Supplementary note to Report TA No. 92 (November, 1979) STATISTICAL
TREATMENT OF DATA FROM LISTENING TESTS ON SOUND=REPRODUCING SYSTEMS
(Alf Gabrielsson)

There are a few differences in terminology between this report (published
in 1979) and the IEC report Publication 268-13: Listening tests on loud-
speakers (Gen&ve, 1985):

(1) The expression "true-to-nature scale' that appears in Report TA No.
92 (for instance, in Figure 1, page 2) should be replaced by "fidelity
scale" as in the IEC report.

(2) The definitions of the number 10 and the number 0 1in Figure 1 of the
TA report should be replaced by the corresponding definitions given in
the IEC report in Appendix A.

However, these changes in terminology do not in any way affect the descrip-
tion of the statistical procedures in the TA report.

In addition to the references given in the TA report further examples of
the statistical treatment of data from listening tests, for the fidelity
scale as well as for other rating scales, are given in the following
papers:

Gabrielsson, A. & Lindstrém, B. (1985). Perceived scund quality of high-
fidelity loudspeakers. Journal of the Audio Engimeéring Society, 33,
33-53.

Gabrielsson, A., Schenkman, B.N. & Hagerman, B. (1988) The effects of
different frequency responses on sound quality judgments and speech
intelligibility. Journal of Speech and Hearing Research, 31 (in press)
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